Preview

Chebyshevskii Sbornik

Advanced search

Explicit reciprocity laws in the theory of local fields

https://doi.org/10.22405/2226-8383-2025-26-4-37-70

Abstract

This paper surveys different approaches to explicit formulas for the Hilbert symbol and their generalizations to 𝑝-adic representations in terms of 𝑝-adic Hodge theory.

About the Author

Denis Georgievich Benois
Universit´e de Bordeaux
France


References

1. Abrashkin, V. A. 1997, “The field of norms functor and the Bruckner-Vostokov formula”,

2. Mathematische Annalen, Vol. 308, pp. 5–19.

3. Abrashkin, V. A. 1997, “Explicit formulae for the Hilbert symbol of a formal group over the

4. Witt vectors”, Izvestiya: Mathematics, Vol. 61, No. 3, pp. 463–515.

5. Abrashkin, V. A. 2007, “An analogue of the field-of-norms functor and of the Grothendieck

6. Conjecture”, Journal of Algebraic Geometry, Vol. 16, pp. 671–730.

7. Abrashkin, V. A. and Jenni, R. 2012, “The field-of-norms functor and the Hilbert symbol for

8. higher local fields”, Journal de Th´eorie des Nombres de Bordeaux, Vol. 24, pp. 1–39.

9. Artin, E. and Hasse, H. 1928, “Die beiden Erg¨anzungss¨atze zum Reziprozit¨atsgesetz der ℓ𝑛-ten

10. Einheitzwurzeln”, Abhandlungen aus dem Mathematischen Seminar der Universit¨at Hamburg,

11. Vol. 6, pp. 46–162.

12. Benois, D. 1997, “P´eriodes 𝑝-adiques et lois de r´eciprocit´e explicites”, Journal f¨ur die reine und

13. angewandte Mathematik, Vol. 493, pp. 115–151.

14. Benois, D. 2000, “On Iwasawa theory of 𝑝-adic representations”, Duke Mathematical Journal,

15. Vol. 104, pp. 211–267.

16. Benois, D. and Nguyen Quang Do, T. 2002, “Les nombres de Tamagawa locaux et la conjecture

17. de Bloch et Kato pour les motifs Q(𝑚) sur un corps ab´elien”, Annales Scientifiques de l’ ´ Ecole

18. Normale Sup´erieure, Vol. 35, No. 5, pp. 641–672.

19. Benois, D. and Berger, L. 2008, “Th´eorie d’Iwasawa des repr´esentations cristallines II”,

20. Commentarii Mathematici Helvetici, Vol. 83, pp. 603–677.

21. Benois, D. 2022, “An introduction to p-adic Hodge theory”, in: Perfectoid Spaces (D. Banerjee

22. & al. eds), Infosys Science Foundation Series, Singapore, pp. 69–219.

23. Berger, L. 2003, “Bloch and Kato’s exponential map: three explicit formulas”, Doc. Math., Extra

24. Vol.: Kazuya Kato’s Fiftieth Birthday, pp. 99–129.

25. Berger, L. 2011, “Trianguline representations”, Bulletin of the London Mathematical Society,

26. Vol. 43, pp. 619–635.

27. Berger, L. 2014, “Lifting the field of norms”, Journal de l’ ´ Ecole Polytechnique - Math´ematiques,

28. Vol. 1, pp. 29–38.

29. Berger, L. and Fourquaux, L. 2017, “Iwasawa theory and 𝐹-analytic Lubin–Tate (𝜙, Γ)-

30. modules”, Doc. Math., Vol. 22, pp. 999–1030.

31. Bloch, S. and Kato, K. 1990, “𝐿-functions and Tamagawa numbers of motives”, in: The

32. Grothendieck Festschrift (P. Cartier, L. Illusie, N. M. Katz, G. Laumon Y.I. Manin, K. A.

33. Ribet eds.), Vol. I, Progress in Mathematics, Vol. 86, Birkh¨auser, Boston, pp. 333–400.

34. Breuil, Ch. 2000, “Groupes 𝑝-divisibles, groupes finis et modules filtr´es”, Annals of Mathematics,

35. Vol. 152, pp. 489–549.

36. Br¨uckner, H. 1966, “Eine explizite Fonnel zum Reziprozit¨atsgesetz f¨ur Primzahlexponenten

37. 𝑝”, in: Hasse, Roquette, “Algebraische Zahlentheorie”, Bericht einer Tagung des Math. Inst.

38. Obervolfach 1964. Bibliographisches Institut 1 Manheim.

39. Br¨uckner, H. 1979, “Explizites Reziprozit¨atsgesetz und Anwendungen”, in: Vorlesungen aus

40. dem Fachbereich Mathematik der Universit¨at GH Essen, Vol. 2, Universit¨at Essen, Fachbereich

41. Mathematik, Essen, 83 pp.

42. Burns, D. and Greither, C. 2003, “On the Equivariant Tamagawa number conjecture for Tate

43. motives”, Inventiones Mathematicae, Vol. 153, pp. 303–359.

44. Cherbonnier, F. and Colmez, P. 1999, “Th´eorie d’Iwasawa des repr´esentations 𝑝-adiques d’un

45. corps local”, Journal of the American Mathematical Society, Vol. 12, pp. 241–268.

46. Coates, J. and Wiles, A. 1977, “On the conjecture of Birch and Swinnerton-Dyer”, Inventiones

47. Mathematicae, Vol. 39, pp. 223–252.

48. Coleman, R. 1979, “Division Values in Local Fields”, Inventiones Mathematicae, Vol. 53, pp.

49. –116.

50. Coleman, R. 1981, “The dilogarithm and the norm residue symbol”, Bulletin de la Soci´et´e

51. Math´ematique de France, Vol. 109, pp. 373–402.

52. Colmez, P. 1992, “P´eriodes 𝑝-adiques des vari´et´es ab´eliennes”, Mathematische Annalen, Vol.

53. , pp. 629–644.

54. Colmez, P. 1998, “Int´egration sur les vari´et´es 𝑝-adiques”, Ast´erisque, Vol. 248, 163 pp.

55. Colmez, P. 1998, “Th´eorie d’Iwasawa des repr´esentations de de Rham d’un corps local”, Annals

56. of Mathematics, Vol. 148, pp. 485–571.

57. Colmez, P. 2003, “Les conjectures de monodromie 𝑝-adiques”, in: S´eminaire Bourbaki 2001/02,

58. Ast´erisque, Vol. 290, pp. 53–101.

59. Colmez, P. 2010, “Repr´esentations de GL2(Q𝑝) et (𝜙, Γ)-modules”, in: Repr´esentations 𝑝-adiques

60. de groupes 𝑝-adiques. Ast´erisque, Vol. 330, pp. 281–506.

61. Destrempes, F. 1995, “Explicit reciprocity laws for Lubin–Tate modules”, Journal f¨ur die reine

62. und angewandte Mathematik, Vol. 463, pp. 27–48.

63. de Shalit, E. 1986, “The explicit reciprocity law in local class field theory”, Duke Mathematical

64. Journal, Vol. 53, pp. 163–176.

65. Fesenko, I. B. 1992, “Class field theory of multidimensional local fields of characteristic 0 with

66. residue field of positive characteristic”, St. Petersburg Mathematical Journal, Vol. 3, pp. 165–

67.

68. Fesenko, I. B. 1992, “A multidimensional local theory of class fields. II.”, St. Petersburg

69. Mathematical Journal, Vol. 3, pp. 1103–1126.

70. Fesenko, I. B. 1995, “Abelian local 𝑝-class field theory”, Mathematische Annalen, Vol. 301, pp.

71. –586.

72. Fesenko, I. B. and Vostokov, S. V. 1993, “Local fields and their extensions”, Translations of

73. Mathematical Monographs, Vol. 121, American Mathematical Society.

74. Fontaine, J.-M. 1977, “Groupes 𝑝-divisibles sur les corps locaux”, Ast´erisque, Vol. 47–48, 264

75. pp.

76. Fontaine, J.-M. 1979, “Modules galoisiens, modules filtr´es et anneaux de Barsotti–Tate”,

77. Ast´erisque, Vol. 65, pp. 3–80.

78. Fontaine, J.-M. 1982, “Sur certaines types de repr´esentations 𝑝-adiques du groupe de Galois

79. d’un corps local; construction d’un anneau de Barsotti-Tate”, Annals of Mathematics, Vol. 115,

80. pp. 529–577.

81. Fontaine, J.-M. 1983, “Cohomologie de de Rham, cohomologie cristalline et repr´esentations 𝑝-

82. adiques”, in: Algebraic geometry Tokyo-Kyoto, Lecture Notes in Mathematics, Vol. 1016, pp.

83. –108.

84. Fontaine, J.-M. 1991, “Repr´esentations 𝑝-adiques des corps locaux”, in: The Grothendieck

85. Festschrift (Cartier, P., Illusie, L., Katz, N. M., Laumon, G., Manin, Y. I. & Ribet, K. A.

86. eds.), Vol. II, Progress in Mathematics, Vol. 87, Birkh¨auser, Boston, pp. 249–309.

87. Fontaine, J.-M. 1994, “Le corps des p´eriodes 𝑝-adiques”, Ast´erisque, Vol. 223, pp. 59–102.

88. Fontaine, J.-M. 1994, “Repr´esentations 𝑝-adiques semistables”, Ast´erisque, Vol. 223, pp. 113–

89.

90. Fontaine, J.-M. 1994, “Sur un th´eor`eme de Bloch et Kato (lettre `a B. Perrin-Riou)”, Inventiones

91. Mathematicae, Vol. 115, pp. 151–161.

92. Fukaya, T. 2001, “Explicit reciprocity laws for 𝑝-divisible groups over higher dimensional local

93. fields”, Journal f¨ur die reine und angewandte Mathematik, Vol. 531, pp. 61–119.

94. Fukaya, T. 2003, “The theory of Coleman power series for K2”, Journal of Algebraic Geom.,

95. Vol. 12, pp. 1–80.

96. Gros, M. and Kurihara, M. 1990, “R´egulateurs syntomiques et valeurs de fonctions 𝐿 𝑝-adiques.

97. I, With an appendix by Masato Kurihara”, Inventiones Mathematicae, Vol. 99, pp. 293–320.

98. Hasse, H. 1936, “Die Gruppe der 𝑝𝑛-primaren Zahlen fur einen Primteiler p von 𝑝”, Journal f¨ur

99. die reine und angewandte Mathematik, Vol. 176, pp. 174–183.

100. Henniart, G. 1981, “Sur les lois de r´eciprocit´e explicites I”, Journal f¨ur die reine und angewandte

101. Mathematik, Vol. 329, pp. 177–203.

102. Herr, L. 1998, “Sur la cohomologie galoisienne des corps 𝑝-adiques”, Bulletin de la Soci´et´e

103. Math´ematique de France, Vol. 126, pp. 563–600.

104. Herr, L. 2001, “Une approche nouvelle de la dualit´e locale de Tate”, Mathematische Annalen,

105. Vol. 320, pp. 307–337.

106. Hilbert, D. 1897, “Die Theorie der algebraischen Zahlk¨orper”, Jahresbericht der Deutschen

107. Mathematiker–Vereinigung, Vol. 4, pp. 175–535.

108. Honda, T. 1970, “On the theory of commutative formal groups”, Journal of the Mathematical

109. Society of Japan, Vol. 22, pp. 213–246.

110. Huber, A. and Kings, G. 2003, “Bloch–Kato conjecture and main conjecture of Iwasawa theory

111. for Dirichlet characters.”, Duke Mathematical Journal, Vol. 119, pp. 393–464.

112. Ireland, K. and Rosen, M. 1990, “A classical introduction to modern number theory”, Graduate

113. Texts in Mathematics, Vol. 84, Springer-Verlag, New York, xiv+389 pp.

114. Iwasawa, K. 1964, “On some modules in the theory of cyclotomic fields”, Journal of the

115. Mathematical Society of Japan, Vol. 16, pp. 42–82.

116. Iwasawa, K. 1968, “On explicit formulas for the norm residue symbol”, Journal of the

117. Mathematical Society of Japan, Vol. 20, pp. 151–165.

118. Kato, K. 1979, “A generalization of local class field theory by using K-groups. I.”, Journal of

119. the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics, Vol. 26, pp. 303–376.

120. Kato, K. 1980, “A generalization of local class field theory by using 𝐾-groups. II”, Journal of

121. the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics, Vol. 27, pp. 603–683.

122. Kato, K. 1991, “The explicit reciprocity law and the cohomology of Fontaine–Messing”, Bulletin

123. de la Soci´et´e Math´ematique de France, Vol. 119, pp. 397–441.

124. Kato, K. 1993, “Lectures on the approach to Iwasawa theory for Hasse-Weil 𝐿-functions via

125. BdR”, in: Arithmetic algebraic geometry (Trento, 1991), Lecture Notes in Mathematics, Vol.

126. , pp. 50–163.

127. Kato, K. 1999, “Generalized explicit reciprocity laws”, Advanced Studies in Contemporary

128. Mathematics (Pusan), Vol. 1, pp. 57–126.

129. Kato, K. 2004, “𝑝-adic Hodge theory and values of zeta-functions of modular forms”, Ast´erisque,

130. Vol. 295, pp. 117–290.

131. Kedlaya, K., Pottharst, J. and Xiao, L. 2014, “Cohomology of arithmetic families of (𝜙, Γ)-

132. modules”, Journal of the American Mathematical Society, Vol. 27, pp. 1043–1115.

133. Kolyvagin, V. A. 1988, “Finiteness of 𝐸(Q) and III(𝐸/Q) for a subclass of Weil curves”,

134. Izvestiya: Mathematics, Vol. 52, pp. 522–540.

135. Kolyvagin, V. A. 1988, “On the Mordell–Weil group and the Shafarevich–Tate group of Weil

136. elliptic curves”, Izvestiya: Mathematics, Vol. 52, pp. 1154–1179.

137. Kummer, E. 1858, “ ¨Uber die allgemeinen Reziprozit¨atsgesetze der Potenzreste”, Journal f¨ur die

138. reine und angewandte Mathematik, Vol. 56, pp. 270–279.

139. Lapin, A. I. 1953, “Theory of Safarevich symbol”, Izvestiya: Mathematics, Vol. 17, pp. 31–50.

140. Lemma, F. and Ochiai, T. 2025, “Kato explicit reciprocity law for Siegel modular forms of

141. weight (3, 3)”, 20 pp. Preprint available at: https://arxiv.org/abs/2504.18304.

142. Lemmermeyer, F. 2000, “Reciprocity laws. From Euler to Eisenstein”, Springer Monographs in

143. Mathematics, Springer–Verlag, Berlin, pp. xx+487.

144. Loeffler, D., Venjakob, O. and Zerbes, S. L. 2015, “Local epsilon isomorphisms”, Kyoto Journal

145. of Mathematics, Vol. 55, pp. 63–127.

146. Lubin, J. and Tate, J. 1965, “Formal Complex Multiplication in Local Fields”, Annals of

147. Mathematics, Vol. 81, pp. 380–387.

148. Morrow, M. 2012, “An introduction to higher dimensional local fields and ad`eles”, preprint.

149. Available at: https://arxiv.org/pdf/1204.0586.

150. Nakamura, K. 2014, “Iwasawa theory of de Rham (𝜙, Γ)-modules over the Robba ring”, Journal

151. of the Institute of Mathematics of Jussieu, Vol. 13, pp. 65–118.

152. Nakamura, K. 2017, “A generalization of Kato’s local 𝜀-conjecture for (𝜙, Γ)-modules over the

153. Robba ring”, Algebra & Number Theory, Vol. 11, pp. 319–404.

154. Nekov´aˇr, J. 1994, “Values of 𝐿-functions and 𝑝-adic cohomology”, in: First European Congress

155. of Mathematics, Vol. II (Paris, 1992), Progress in Mathematics, Vol. 120, Birkh¨auser, Basel, pp.

156. –291.

157. Parshin, A. N. 1985, “Local class field theory”, Proceedings of the Steklov Institute of

158. Mathematics, Vol. 3, pp. 157–185.

159. Parshin, A. N. 1991, “Galois cohomology and Brauer group of local fields”, Proceedings of the

160. Steklov Institute of Mathematics, Vol. 4, pp. 191–201.

161. Perrin-Riou, B. 1992, “Th´eorie d’Iwasawa et hauteurs 𝑝-adiques”, Inventiones Mathematicae,

162. Vol. 109, pp. 137–185.

163. Perrin-Riou, B. 1994, “Th´eorie d’Iwasawa des r´epresentations 𝑝-adiques sur un corps local”,

164. Inventiones Mathematicae, Vol. 115, pp. 81–149.

165. Perrin-Riou, B. 1995, “Fonctions 𝐿 𝑝-adiques des repr´esentations 𝑝-adiques”, Ast´erisque, Vol.

166. , 198 pp.

167. Schneider, P. and Venjakob, O. 2016, “Coates–Wiles homomorphisms and Iwasawa cohomology

168. for Lubin–Tate extensions”, in: Elliptic curves, modular forms and Iwasawa theory, Springer

169. Proceedings in Mathematics & Statistics, Vol. 188, Springer, Cham, pp. 401–468.

170. Schneider, P. and Venjakob, O. 2025, “Reciprocity laws for (𝜙, Γ)-modules over Lubin–Tate

171. extensions”, Memoirs of the European Mathematical Society, Vol. 24, 194 pp.

172. Scholl, A. J. 1998, “An introduction to Kato’s Euler systems”, in: Galois representations in

173. arithmetic algebraic geometry, ed. A. J. Scholl and R. L. Taylor. Cambridge University Press,

174. pp. 379–460.

175. Shafarevich, I. R. 1950, “A general reciprocity law”, Matematicheskii Sbornik, Vol. 26 (68), No.

176. , pp. 113–146.

177. Sen, S. 1972, “Ramification in 𝑝-adic Lie extensions”, Inventiones Mathematicae, Vol. 17, pp.

178. –50.

179. Sen, S. 1980, “On explicit reciprocity laws”, Journal f¨ur die reine und angewandte Mathematik,

180. Vol. 313, pp. 1–26.

181. Tate, J. 1967, “𝑝-divisible groups”, in: Proc. Conf. Local Fields, Driebergen, 1966, Springer T.A.

182. ed., Springer, pp. 158–183.

183. Tavares Ribeiro, F. 2011, “An explicit formula for the Hilbert symbol of a formal group”, Annales

184. de l’Institut Fourier, Vol. 61, pp. 261–318.

185. Tsuji, T. 2004, “Explicit reciprocity law and formal moduli for Lubin–Tate formal groups”,

186. Journal f¨ur die reine und angewandte Mathematik, Vol. 569, pp. 103–173.

187. Venjakob, O. 2025, “Explicit reciprocity laws in Iwasawa theory: A survey with some focus on the

188. Lubin-Tate setting”, in: Arithmetic of 𝐿-functions. Proceedings of an International Conference

189. held at ICMAT, Madrid, May 2023, pp. 201–251.

190. Vostokov, S. V. 1978, “An explicit form of the reciprocity law”, Izvestiya: Mathematics, Vol. 42,

191. pp. 1288–1321.

192. Vostokov, S. V. 1979, “A norm pairing in formal modules”, Izvestiya: Mathematics, Vol. 43, pp.

193. –794.

194. Vostokov, S. V. 1981, “Symbols on formal groups”, Izvestiya: Mathematics, Vol. 45, pp. 985–

195.

196. Vostokov, S. V. 1985, “Explicit construction of the theory of class fields of a multidimensional

197. local field”, Izvestiya: Mathematics, Vol. 49, pp. 283–308.

198. Vostokov, S. V. 1995, “The Hilbert pairing in a complete multidimensional field”, Proceedings

199. of the Steklov Institute of Mathematics, Vol. 208, pp. 80–92.

200. Vostokov, S. V. and Fesenko, I. B. 1983, “The Hilbert symbol for Lubin–Tate formal groups II”,

201. Zapiski Nauchnykh Seminarov POMI, Vol. 132, pp. 82–96.

202. Vostokov, S. V. and Kirillov, A. N. 1983, “Normed pairing in a two-dimensional local field”,

203. Zapiski Nauchnykh Seminarov POMI, Vol. 132, pp. 76–84.

204. Vostokov, S. V. and Demchenko, O. V. 2000, “The explicit formula of the Hilbert symbol for

205. Honda formal groups”, Zapiski Nauchnykh Seminarov POMI, Vol. 272, pp. 86–128.

206. Wang, S. 2013, “Le syst`eme d’Euler de Kato”, Journal de Th´eorie des Nombres de Bordeaux,

207. Vol. 25, pp. 677–758.

208. Weil, A. 1975, “La cyclotomie jadis et nagu`ere”, S´eminaire Bourbaki, 26`eme ann´ee (1973/1974),

209. Lecture Notes in Mathematics, Vol. 431, Exp. No. 452, pp. 318–338, Springer, Berlin–New York.

210. Wiles, A. 1978, “Higher explicit reciprocity laws”, Annals of Mathematics, Vol. 107, pp. 235–

211.

212. Wintenberger, J.-P. 1983, “Le corps des normes de certaines extensions infinies de corps locaux;

213. applications”, Annales Scientifiques de l’ ´ Ecole Normale Sup´erieure, Vol. 16, pp. 59–89.

214. Witt, E. 1937, “Zyklische K¨orper und Algebren der Charakteristik 𝑝 vom Grad 𝑝𝑛”, Journal

215. f¨ur die reine und angewandte Mathematik, Vol. 176, pp. 126–140.

216. Zerbes, S. L. 2007, “The higher Hilbert pairing via (𝜙,𝐺)-modules”, preprint available at:

217. https://arxiv.org/pdf/0705.4269.


Review

For citations:


Benois D.G. Explicit reciprocity laws in the theory of local fields. Chebyshevskii Sbornik. 2025;26(4):37-70. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-4-37-70

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)