Preview

Chebyshevskii Sbornik

Advanced search

Development of Siegel–Shidlovskii method in transcendental number theory

https://doi.org/10.22405/2226-8383-2025-26-4-7-32

Abstract

A brief biography of A.B. Shidlovskii is given at the beginning of the article. Then it tells about the origins of the method - the Hermite and Lindemann theorems. The main definitions and results of the works of K. Siegel in 1929 and 1949 are formulated. The definition of the
𝐸− function and the conditions for the normality of a set of functions are given, examples are given. The story about the works of A.B. Shidlovskii began with the condition of irreducibility of a system of functions. Then the three main theorems of A.B. Shidlovskii and their main consequences are formulated. A theorem on the linear independence of the values of a set of 𝐸−
functions with coefficients from an imaginary quadratic field is presented. A similar theorem is formulated in the case of arbitrary algebraic coefficients. The hypothesis of K. Siegel on the structure of the set of 𝐸− functions satisfying differential equations is formulated and its solution is described. The formulations of theorems are given under which generalized hypergeometric
functions are algebraically independent over the field of rational functions, and their values at algebraic points are algebraically independent. Quantitative problems are described - estimates of measures of linear and algebraic independence of function values. Unimproved estimates are given. Another class of functions is considered, to which the Siegel-Shidlovskii method can be applied, the class of 𝐺− functions. The factorial cancelling condition is formulated, which holds
for all considered 𝐺− functions. The concept of a global relation is given and the possibility of its application to series diverging in the field of complex numbers is described. It describes the arithmetic nature of results of summation of divergent series.

About the Authors

Alexandr Ivanovich Galochkin
Lomonosov Moscow State University
Russian Federation

doctor of physical and mathematical sciences, professor



Vasily Alexandrovich Gorelov
Moscow Power Engineering Institute
Russian Federation

doctor of physical and mathematical sciences



Yuri Valentinovich Nesterenko
Lomonosov Moscow State University
Russian Federation

doctor of physical and mathematical sciences, professor,
corresponding member of RAS



Vladislav Khasanovich Salihov

Russian Federation

doctor of physical and mathematical sciences, professor



Vladimir Grigor’evich Chirskii
Lomonosov Moscow State University
Russian Federation

doctor of physical and mathematical sciences, professor



References

1. Hermite. Ch.1873.“ Sur la fonction exponentielle“,C.R.Ac.Sci.(Paris) Vol,77, pp.18-24,74- 79,221-233,285-293.

2. Lindemann .F.1882.“ Uber die Zahl 𝜋“ Math.Ann. , Bd.20, pp.679-692.

3. Siegel. C.L.1929-1930. “ Uber einige Anwendungen Diophantischer Approximationen“, Abh.

4. Preuss. Acad. Wiss., Phys.-Math. Kl.,N 1, pp. 1-70.

5. Siegel. C.L.1949. “ Transcendental numbers“, Princeton: Princeton University Press.

6. Beukers. F.; Brownawell. W. D.; Heckman. G.1988.“ Siegel normality“, Ann.Math,Ser.127, p.279-

7.

8. Shidlovskii. A. B. 1989. “ Transcendental numbers“, W.de Gruyter.-Berlin.-New York. 467 pp.

9. Shidlovskii. A. B. 1954. “ On transcendence and algebraic independence of the values of certain

10. classes of entire functions “, Dokl. Akad. Nauk SSSR, Vol. 96, p.697 -700.

11. Shidlovskii. A. B. 1959. “ On transcendence and algebraic independence of the values of certain

12. classes of entire functions “, Uch. Zap. Mosk. Univ., Vol. 186, p.11 -70.

13. Nesterenko. Yu. V. 1969. “ On algebraic independence of the values of E-functions satisfying

14. nonhomogeneous linear differential equations“, Math. Notes, Vol. 5, p.352-358.

15. Galochkin. A. I. 1970. “ On algebraic independence of the values of E-functions at certain

16. transcendental points“, Mosc. Univ. Math. Bull., No. 5, p.41-45.

17. Shidlovskii. A. B.; Nesterenko. Yu.V. 1996. “ On linear independence of the values of E-functions

18. “, Mat. Sb. , Vol. 187,No 8, p.93 -108.

19. Andr´e. Y. 2000. “ S´eries Gevrey de type arithm´etique,I,II“, Ann.Math., 151, p.705-740,741-756.

20. Beukers. F. 2006.“ A refined version of the Siegel-Shidlovskii theorem“, Ann.Math., 163, p.369-

21.

22. Gorelov. V. A. 2004. “ A special case of the problem of linear independence of the values of

23. E-functions “, Vest, MEI ,No 6, p.39 - 42.

24. Shidlovskii. A. B. 1989. “ Criterion of algebraic independence of the values of E-functions at

25. algebraic points “, Mosc. Univ. Math. Bull., Ser. 1, p.20 -25.

26. Adamczewski. S.; Rivoal. T. 2018. “ Exceptional values of E-functions at algebraic points “,

27. Bull. London Math. Soc., 50, p.697-708.

28. Salikhov. V. Kh. 1973. “ On algebraic independence of the values of E-functions satisfying first

29. order linear differential equations “, Mat. Zametki , Vol. 13,No 1, p.29 - 40.

30. Gorelov. V.A. 2000. “ On a weakened Siegel’s hypothesis“, Mat. Zametki,Vol 11, No 6, p.33 -

31.

32. Gorelov. V. A. 2004. “ On algebraic independence of the values of E-functions at exceptional

33. points and Siegel’s hypothesis“, Mat. Zametki,Vol 67, No 4, p.549 - 565.

34. Fichler. S.; Rivoal. T. 2022. “ On Siegel’s problem for E-functions “, Rend. Sem. Mat. Univ.

35. Padova, 148, p.83-115.

36. Galochkin. A. I. 1981. “ A criterion for hypergeometric Siegel functions to belong to the class

37. of E-functions“, Mat. Zametki, Vol. 29, No. 1, p.3-14.

38. Maier. W. 1927.“ Potenzreihen irrationalen Grenzwertes“, J. Reine und angew. Math., 156,

39. p.93-148.

40. Oleinikov. V. A. 1990. “ On algebraic independence of the values of E-functions “, Mat. Sb,,Vol

41. (120), No 2, p.301-306.

42. Salikhov. V. Kh. 1990. “ A criterion for the algebraic independence of the values of a class of

43. hypergeometric E-functions “, Math. USSR Sb. , Vol. 69, p.203 - 226.

44. Salikhov. V.Kh. 1990. “ Irreducibility of hypergeometric equations and algebraic independence

45. of the values of E-functions “, Acta Arithm. , Vol. 53, p.453 - 471.

46. Fel’dman. N. I. ; Nesterenko. Yu.V. 1998. “ Encyclopaedia of Mathematical Sciences, A.N.

47. Parshin, I.R. Shafarevich (Eds.) Number Theory IV. Transcendental Numbers.“, Springer

48. Verlag., Vol. 44,345 pp.

49. Borel. E. 1899.“ Sur la nature arithmetique du nombre e.“, C.R.Ac.Sci.(Paris), 128, p.596-599.

50. Popken. J. 1929.“ Zur Transzendenz von e.“, Math.Zs, Bd.29, p.525-541.

51. Mahler. K. 1932.“ Zur Approximation der Exponentialfunction und des Logarithms.“, J.reine

52. und angew. Math., Bd.166, p.118-136.

53. Lang. S. 1962.“ A transcendence measure for 𝐸−functions.“, Mathematika., V.9, p.157-161.

54. Galochkin. A. I. 1968. “ Estimate for the conjugate transcendence measure for the values of

55. E-functions“, Mat. Zametki, Vol. 3, No. 4, p.377-386.

56. Shidlovskii. A. B. 1967. “ Transcendence measure estimates for the values of E-functions. “, Mat.

57. Zametki, Vol. 2, No. 1, p.33-44.

58. Nesterenko. Yu. V. 1969. “ Estimates of the orders of zeros of analytic functions of a certain

59. class and their applications to the theory of transcendental numbers“, Sov. Math. Dokl., Vol.

60. , p.938-942.

61. Bertrand. D; Chirskii. V.; Yebbou. J.2004. “ Effective estimates for global relations on Eulertype

62. series. “, Ann.Fac.Sci. Toulouse., Vol. 13, No. 2, p.241-260.

63. Osgood. C. 1966.“ Some theorems on Diophantine approximation.“, Trans.Am.Math.Soc.,

64. V.123, p.64-87.

65. Galochkin. A. I. 1970. “ A lower bound for linear forms in the values of certain hypergeometric

66. functions“, Mat. Notes,8, p.478-484.

67. Korobov. A. N. 1981. “ Estimates for certain linear forms “, Mosc. Univ. Math. Bull,6, p.45-49.

68. Korobov. A. N. 1993. “ Multidimensional continued fractions and estimates of linear forms.“,

69. ActaArith.,71, p.331-349.

70. Galochkin. A. I. 1984. “ On estimates, unimprovable with respect to height, of some linear forms

71. “, Math. USSR Sb.,52, p.407-419.

72. Ivankov. P. L. 1991. “ On arithmetic properties of the values of hypergeometric functions“, Math.

73. USSR Sb.,72, p.267-286.

74. Galochkin. A. I. 1974. “ Estimates from below of polynomials in the values of analytic functions

75. of a certain class “, Math. USSR Sb.,24, p.385-407.

76. Chudnovsky. G. V. 1985. “ On applications of Diophantine approximations. “, Proc. Natl. Acad.

77. Sci. USA., v. 81, p.7261-7265.

78. Bombieri. E. 1981.“ On 𝐺− functions.Recent Progress in Analytic Number Theory“, London:

79. Academic Press, V.2, p.1-68.

80. Hardy G.H.1949.“ Divergent Series“, Clarendon Press.-London.510pp.

81. Ramis, J.P.1993.“ Series divergentes et theories asymptotiques“, Panoramas et Syntheses,

82. no.21, Soc. Math. France. -Paris.80pp.

83. Ferguson. T.2021.“Arithmetic properties of Э-functions“,J.Number Theoty, Vol, 229, pp.168-178.

84. Fischler. S.;Rivoal. T.2016.“Arithmetic theory of E-operators“,J.d l’Ecole polytechnique-Mathematiques,

85. Vol, 3, pp.31-65.

86. Fischler.S.;Rivoal.T.2018.“Microsolutions of differential operators and values of arithmetic

87. Gevrey series“,Michigan Math. J., Vol, 61, pp.239-254.

88. Rivoal.T.2012.“On the arithmetic nature of the values of the Gamma function,Euler’s constant

89. and Gompertz’s constant“,American J.of Math, Vol, 140,no.2. pp.317-348.

90. Fischler. S.;Rivoal. T.2023. “Relations between values of arithmetic Gevrey series, and

91. applications to values of the Gamma function“,( arXiv:2301.13518v1[math.NT])

92. Andre.Y.2003.“Arithmetic Gevrey series and transcendence. A survey“,J. Theor. Nombres

93. Bordeaux, Vol, 15, pp.1-10.

94. Bertrand.D.;Beukers.F.1985.“Equations differentielles linearies et majorations de multiplicities

95. “,Annales scientifiques ENS, Vol, 18,no.1. pp.181-192.

96. Chirskii V. G. 2019. “Product Formula, Global Relations and Polyadic Integers“, Russ. J. Math.

97. Phys., Vol.26, no.3, pp.286-305.

98. Chirskii V. G.2020. “ Arithmetic properties of generalized hypergeometric F- series“, Russ. J.

99. Math. Phys., Vol.27, no.2, pp.175-184.

100. Chirskii V. G.2022. “ Arithmetic properties of values of generalized hypergeometric series with

101. polyadic transcendental parameters“, Doklady Math., Vol.506,p.95-107.

102. Ernvall-Hytonen A.-M.;Matala-aho T.;Seppala I. 2023. “ Euler’s factorial series, Hardy integral,

103. and continued fractions“, J.Number Theory, Vol. 244, pp.224-250.


Review

For citations:


Galochkin A.I., Gorelov V.A., Nesterenko Yu.V., Salihov V.Kh., Chirskii V.G. Development of Siegel–Shidlovskii method in transcendental number theory. Chebyshevskii Sbornik. 2025;26(4):7-32. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-4-7-32

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)