A distribution related to Farey series - II
https://doi.org/10.22405/2226-8383-2025-26-3-136-173
Abstract
We continue to study some arithmetical properties of Farey sequences by the method introduced by F. Boca, C. Cobeli and A. Zaharescu (2001). Let Φ𝑄 be the classical Farey sequence of order 𝑄. Having the fixed integers 𝐷 ⩾ 2 and 0 ⩽ 𝑐0 ⩽ 𝐷 − 1, we colour to the red
the fractions in Φ𝑄 with denominators ≡ 𝑐0 (mod𝐷). Consider the gaps in Φ𝑄 with coloured endpoints, that do not contain the fractions 𝑎/𝑞 with 𝑞 ≡ 𝑐0 (mod𝐷) inside. The question is to find the limit proportions 𝜈(𝑟;𝐷, 𝑐0) (as 𝑄 → +∞) of such gaps with precisely 𝑟 fractions inside in the whole set of the gaps under considering (𝑟 = 0, 1, 2, 3, . . .).
In fact, the expression for this proportion can be derived from the general result obtained by C. Cobeli, M. Vˆajˆaitu and A. Zaharescu (2012). However, such formula expresses 𝜈(𝑟;𝐷, 𝑐0) in the terms of areas of some polygons related to a special geometrical transform. In the present paper, we obtain explicit formulas for 𝜈(𝑟;𝐷, 𝑐0) for the cases 𝐷 = 3 and 𝑐0 = 1, 2. Thus this and previous author’s papers cover the case 𝐷 = 3.
About the Author
Maxim Alexandrovich KorolevRussian Federation
References
1. Korolev M.A., 2023, “A distribution related to Farey sequences”, Chebyshevskii Sb., vol. 24. № 4. P. 137–190.
2. Korolev M.A., 2025, “A distribution related to Farey sequences - I”, arXiv:2502.19881 [math.NT] (27.02.2025).
3. Gutthery S.B., 2011, “A Motif of Mathematics”, Docent Press, Boston, Massachusetts, USA.
4. Cobeli C., Zaharescu A., 2003, “The Haros-Farey sequence at two hundred years. A survey”, Acta Univ. Apulensis Math. Inform., vol. 5. P. 1–38.
5. Alkan E., Ledoan A.H., Vˆajˆaitu M., Zaharescu A., 2006, “Discrepancy of fractions with divisibility constraints”, Monatsh. Math., vol. 149. P. 179–192.
6. Alkan E., Ledoan A.H., Vˆajˆaitu M., Zaharescu A., 2006, “Discrepancy of sets of fractions with congruence constraints”, Rev. Roumaine Math. Pures Appl., vol. 51. P. 265–276.
7. Boca F.P., Heersink B., Spiegelhalter P., 2013, “Gap distribution of Farey fractions under some divisibility constraints”, Integers, vol. 13. Paper No. A44. 15 pp.
8. Heersink B., 2016, “Poincare sections for the horocycle ow in covers of 𝑆𝐿(2;R) = 𝑆𝐿(2; Z) and applications to Farey fraction statistics”, Monatsh. Math., vol. 179. P. 389–420.
9. Ledoan A.H., The discrepancy of Farey series // Acta Math. Hungar. 2018. Vol. 156. P. 465–480.
10. Athreya J.S., Cheung Y., 2012, “A Poincar´e section for horocycle flow on the space of lattices”, arXiv:1206.6597 [math.DS] (28.06.2012).
11. Athreya J.S., Chaika J., Leli`evre S.,2013, “The gap distribution of slopes on the golden 𝐿”, arXiv:1308.4203 [math.DS] (20.08.2013).
12. Taha D., 2018, “The Boca-Cobeli-Zaharescu Map Analogue for the Hecke Triangle Groups 𝐺𝑞”, arXiv:1810.10668 [math.DS] (25.10.2018).
13. Cheung Y., Quas A., 2024, “BCZ map is weakly mixing”, arXiv:2403.14976v1 [math.DS] (22.03.2024).
14. Cobeli C., Zaharescu A., 2005, “On the intervals of a third between Farey fractions”, arXiv:math/0511363v1 [math.NT] (14.11.2005).
15. Haynes A., 2004, “The distribution of special subsets of the Farey sequence”, J. Number Theory., vol. 107. P. 95–104.
16. Haynes A.K., 2010, “Numerators of differences of nonconsecutive Farey fractions”, Int. J. Number Theory, vol. 6. № 3. P. 655–666.
17. Boca F.P., Siskaki M., 2022, “A note on the pair correlation of Farey fractions”, arXiv: 2109.12744v2 [math.NT] (19.09.2022).
18. Marklof J., 2023, “Smallest denominators”, arXiv:2310.11251v1 [math.NT] (17.10.2023).
19. Chahala B., Chaube S., 2023, “Pair correlation of Farey fractions with square-free denominators”, arXiv:2303.12882v1 [math.NT] (22.05.2023).
20. Chahal B., Chaubey S., Goel S., 2024, “On the distribution of index of Farey sequences”, Res. Number Theory., vol. 10. Article No 27. 34 pp.
21. Chen H., Haynes A., 2024, “Expected value of the smallest denominator in a random interval of fixed radius”, arXiv:2109.12668v2 [math.NT] (15.11.2022).
22. Sayous R., 2024, “Gaps in the complex Farey sequence of an imaginary quadratic number field”, arXiv:2407.04380v1 [math.NT] (05.07.2024).
23. Ren X., 2024, “On 𝑞-deformed Farey sum and a homological interpretation of 𝑞-deformed real quadratic irrational numbers”, arXiv:2210.06056v4 [math.RT] (05.01.2024).
24. Boca F.P., Cobeli C., Zaharescu A., 2001, “A conjecture of R. R. Hall on Farey points”, J. reine angew. Math., vol. 535. P. 207–236.
25. Cobeli C., Zaharescu A., 2005, “The distribution of rationals in residue classes”, arXiv: math/0511356v1 [math.NT] (14.11.2005).
26. Cobeli C., Vˆajˆaitu M., Zaharescu A.,2012, “The distribution of rationals in residue classes”, Math. Reports., vol. 14(64). № 1. P. 1–19.
27. Boca F.P., Cobeli C., Zaharescu A., 2003, “On the distribution of the Farey sequence with odd denominators”, Michigan Math. J., vol. 51. P. 557–573.
28. Badziahin D.A., Haynes A.K., 2011, “A note on Farey fractions with denominators in arithmetic progressions”, Acta Arith., vol. 146. № 3. P. 205–215.
29. Smirnov E.Yu., 2022, Frieze patterns and continued fractions (in Russian), M., MCCME, 2022.
Review
For citations:
Korolev M.A. A distribution related to Farey series - II. Chebyshevskii Sbornik. 2025;26(3):136-173. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-3-136-173






















