On unars with identities in congruence lattice, II
https://doi.org/10.22405/2226-8383-2025-26-3-125-135
Abstract
We prove that if a congruence lattice of a unar satisfies a non-trivial lattice identity, then the unar is a homomorphic image of a coproduct of finite number of lines and rays, which, in turn, is equivalent to the fact that the unar has only a finite number of connected components, knots, initial elements, and input degree of each element of the unar is finite.
About the Authors
Igor Borisovich KozhukhovRussian Federation
doctor of physical and mathematical sciences
Alexey Mikhailovich Pryanichnikov
Russian Federation
References
1. Stepanova, A. A., Ptahov, D. O. 2013, “Congruence lattice of S-acts“, Far Eastern Mathematical Journal, vol. 13, no. 1, pp. 107–115.
2. Kozhukhov, I. B., Pryanichnikov, A. M., Simakova, A. R. “Conditions of modularity of the congruence lattice of an act over a rectangular band“, Izv. Math., 2020, vol. 84, iss. 2, pp. 291–323.
3. Egorova, D.P. 1978, “The structure of congruences of unary algebra“, Interuniversity scientific collection "Ordered sets and lattices", Saratov: Saratov University Press, issue 5, pp. 11–44. (in Russian)
4. Kearnes, K. A., Kiss, E. W. 2013, “The shape of congruence lattices“, Memoirs of the American Mathematical Society, vol. 222, 169 pp.
5. Nation, J. B. 1973, “Varieties of algebras whose congruence lattices satisfy lattice identities“, PhD thesis, California Institute of Technology, 63 pp.
6. Kozhuhov, I. B., Pryanichnikov, A. M. 2022, “Acts with identities in the congruence lattice“, Algebra Universalis, vol. 83, iss. 16, article 6, 18 pp.
7. Repnitsky, V. B., Katsman, S. I. 1990, “Commutative semigroups with lattice of subsemigroups satisfies a nontrivial identity“, Mathematics of the USSR-Sbornik, vol. 65, no. 2, pp. 465–485.
8. Kozhukhov, I. B., Pryanichnikov, A. M. 2019, “On unars with identities in congruence lattice“’, Proceedings of the VI International Scientific and Technical Conference SITONI-2019, Donetsk, pp. 64–69. (in Russian)
9. Kohn, P. M. 1981, “Universal algebra“, Springer Dordrecht, 412 pp.
10. Gr¨atzer, G. 2011, Lattice Theory: Foundation, Birkh¨auser Basel, 614 pp.
11. Clifford, A. H., Preston, G. B. 1961–1967, “The algebraic theory of semigroups“, American Mathematical Society. Mathematical Surveys, Providence, Rhode Island, no. 7, vol. I-II, 244 pp. and 350 pp.
12. Kilp, M., Knauer, U. & Mikhalev, A. V. 2000, “Monoids, acts and categories“, Berlin; New York: de Gruyter, 546 pp.
13. Jakubikov´a-Studenovsk´a, D., P´ocs, J. 2009, “Monounary algebras“, UPJS, Koˇsice, 301 pp.
14. Jipsen, P., Rose, H. 1992, Variety of lattices, Lecture Notes in Mathematics, Springer Berlin, vol. 1533, 166 pp.
15. Sachs D. 1961, Identities in finite partition lattices, Proc. Amer. Math. Soc., vol. 12. iss. 6, pp. 944–945.
Review
For citations:
Kozhukhov I.B., Pryanichnikov A.M. On unars with identities in congruence lattice, II. Chebyshevskii Sbornik. 2025;26(3):125-135. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-3-125-135






















