Preview

Chebyshevskii Sbornik

Advanced search

On unars with identities in congruence lattice, II

https://doi.org/10.22405/2226-8383-2025-26-3-125-135

Abstract

We prove that if a congruence lattice of a unar satisfies a non-trivial lattice identity, then the unar is a homomorphic image of a coproduct of finite number of lines and rays, which, in turn, is equivalent to the fact that the unar has only a finite number of connected components, knots, initial elements, and input degree of each element of the unar is finite.

About the Authors

Igor Borisovich Kozhukhov
National Research University MIET; Lomonosov Moscow State University; The Russian Presidential Academy of National Economy and Public Administration
Russian Federation

doctor of physical and mathematical sciences



Alexey Mikhailovich Pryanichnikov
Lomonosov Moscow State University, «Kvantom» LLC
Russian Federation


References

1. Stepanova, A. A., Ptahov, D. O. 2013, “Congruence lattice of S-acts“, Far Eastern Mathematical Journal, vol. 13, no. 1, pp. 107–115.

2. Kozhukhov, I. B., Pryanichnikov, A. M., Simakova, A. R. “Conditions of modularity of the congruence lattice of an act over a rectangular band“, Izv. Math., 2020, vol. 84, iss. 2, pp. 291–323.

3. Egorova, D.P. 1978, “The structure of congruences of unary algebra“, Interuniversity scientific collection "Ordered sets and lattices", Saratov: Saratov University Press, issue 5, pp. 11–44. (in Russian)

4. Kearnes, K. A., Kiss, E. W. 2013, “The shape of congruence lattices“, Memoirs of the American Mathematical Society, vol. 222, 169 pp.

5. Nation, J. B. 1973, “Varieties of algebras whose congruence lattices satisfy lattice identities“, PhD thesis, California Institute of Technology, 63 pp.

6. Kozhuhov, I. B., Pryanichnikov, A. M. 2022, “Acts with identities in the congruence lattice“, Algebra Universalis, vol. 83, iss. 16, article 6, 18 pp.

7. Repnitsky, V. B., Katsman, S. I. 1990, “Commutative semigroups with lattice of subsemigroups satisfies a nontrivial identity“, Mathematics of the USSR-Sbornik, vol. 65, no. 2, pp. 465–485.

8. Kozhukhov, I. B., Pryanichnikov, A. M. 2019, “On unars with identities in congruence lattice“’, Proceedings of the VI International Scientific and Technical Conference SITONI-2019, Donetsk, pp. 64–69. (in Russian)

9. Kohn, P. M. 1981, “Universal algebra“, Springer Dordrecht, 412 pp.

10. Gr¨atzer, G. 2011, Lattice Theory: Foundation, Birkh¨auser Basel, 614 pp.

11. Clifford, A. H., Preston, G. B. 1961–1967, “The algebraic theory of semigroups“, American Mathematical Society. Mathematical Surveys, Providence, Rhode Island, no. 7, vol. I-II, 244 pp. and 350 pp.

12. Kilp, M., Knauer, U. & Mikhalev, A. V. 2000, “Monoids, acts and categories“, Berlin; New York: de Gruyter, 546 pp.

13. Jakubikov´a-Studenovsk´a, D., P´ocs, J. 2009, “Monounary algebras“, UPJS, Koˇsice, 301 pp.

14. Jipsen, P., Rose, H. 1992, Variety of lattices, Lecture Notes in Mathematics, Springer Berlin, vol. 1533, 166 pp.

15. Sachs D. 1961, Identities in finite partition lattices, Proc. Amer. Math. Soc., vol. 12. iss. 6, pp. 944–945.


Review

For citations:


Kozhukhov I.B., Pryanichnikov A.M. On unars with identities in congruence lattice, II. Chebyshevskii Sbornik. 2025;26(3):125-135. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-3-125-135

Views: 39


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)