Preview

Chebyshevskii Sbornik

Advanced search

Integral equations of fractional order with a variable external coefficient and monotonic nonlinearity

https://doi.org/10.22405/2226-8383-2025-26-3-44-57

Abstract

Under reasonably easy-to-observe restrictions on the nonlinearities, without assuming that they satisfy the Lipschitz condition, global theorems on the existence, uniqueness, and estimates of the solution for three different classes of inhomogeneous nonlinear integral equations are proved by the method of monotone (in the sense of Browder – Minty) operators. In these equations, the operators of fractional (in the sense of Riemann – Liouville) integration with
a variable external coefficient enter linearly or nonlinearly, or these operators contain a nonlinearity under the sign of the integral (Hammerstein-type equation). In the latter case, the existence and uniqueness of the solution are established without the coercivity condition on the nonlinearity. In all cases, the conditions found in the work under which the fractional integration operators with a variable external coefficient act continuously from the real Lebesgue
space 𝐿𝑝(𝑎, 𝑏) to the spaces conjugate to them and are strictly positive play an important role. The proved theorems within the framework of the space 𝐿2(𝑎, 𝑏) cover the corresponding linear equations with integrals of fractional order. From the obtained estimates, in particular,
it directly follows that under the conditions of the proved theorems, the corresponding homogeneous linear and nonlinear integral equations have only a trivial (zero) solution.

About the Author

Sultan Nazhmudinovich Askhabov
Kadyrov Chechen State University
Russian Federation

doctor of physical and mathematical sciences



References

1. Gorenflo R., Vesella S. Abel integral equations. Analysis and applications. Lecture Notes in Mathematics (Berlin-Heidelberg, Springer-Verlag, 1991).

2. Askhabov S. N. Nonlinear equations of convolution type. (russian) [Nelineinie uravneniya tipa svertki] (Moscow: Fizmatlit, 2009).

3. Brunner H. Volterra integral equations: an introduction to the theory and applications (Cambridg: Univ. Press, 2017).

4. Tikhonov A. N. 1937, “On the cooling of bodies during radiation, following the law of Stefan’a-Boltzmann’a”, Izvestiya Akad. Nauk SSSR (otdelenie matem. i estestv. nauk, seriya geogr. i geofiz.), no. 3, pp. 461-479 (in Russian).

5. Zabrejko P. , Rogosin S. 1997, “Nonlinear Abel equation with monotone operators”, J. Electrotechn. Math. (Pristina), no. 1, pp. 53-65.

6. Grasmair M., Hildrum F. 2025, “Subgradient-based Lavrentiev regularisation of monotone illposed problems”, Inverse Problems, vol. 41, pp. 1-35.

7. Okrasinska-Piociniczak H., Piociniczak J. 2018, “Numerical method for Volterra equation with a power-type nonlinearity”, Applied Mathematics and Computation, vol. 337, pp. 452–460.

8. Andersen K. F., Sawyer E. T. 1988, “Weighted norm inequalities for the Riemann-Liouville and Weil fractional integral operators”, Trans. Amer. Math. Soc., vol.308, no. 2, pp.547-558.

9. Prokhorov D. V., Stepanov V. D. 2003, “Weighted Estimates for the Riemann–Liouville Operators and Applications”, Trudy Matematicheskogo Instituta imeni V.A. Steklova, vol. 243, pp. 289–312.

10. Askhabov S. N., 2007, “Nonlinear equations with fractional-order integrals”, Reports of Adyghe (Circassian) International Academy of Sciences, vol. 9, no. 3, pp. 9-14.

11. Askhabov S. N., Dzhabrailiv A. L., 2012, “Nonlinear equations with fractional-order integrals on the semi-axis”, Reports of Adyghe (Circassian) International Academy of Sciences, vol. 14, no. 1, pp. 28-34.

12. Nakhushev A. M. Drobnoe ischislenie i ego prilogenie [Fractional calculus and its applications] (Moscow: Fizmatlit, 2003).

13. Tricomi F. G. 1927, “Sull’ equazioni integrale di Abel con limiti d’integrazione constanti”, Rend. Inst. Lombardo., vol. 60, no. 2, pp. 598-604.

14. Gajewski H., Gr¨oger K., Zacharias K. Nichtlineare operatorgleichungen und operatordifferentialgleichungen (Berlin: Akademie-Verlag, 1974).

15. Samko S. G., Kilbas A. A., Marichev O. I. Fractional integrals and derivatives. Theory and applications (Yverdon: Gordon and Breach Science Publishers, 1993).

16. Kolmogorov А. N. and Fomin S. V. Elementy teorii funktsiy i funktsional’nogo analiza [Elements of the theory of functions and functional analysis] (Moscow: Fizmatlit, 2004). (in Russian).

17. Zorich V. А. Mathematical Analysis. Part I. — 4th edition, revised (Moscow: MCNMO, 2002).

18. Nakhushev A. M., 2001, “Once again, about one property of the Riemann-Liouville operator”, Reports of Adyghe (Circassian) International Academy of Sciences, vol. 5, no. 2, pp. 42-43.

19. Brezis H., Browder F. E. 1974, “Some new results about Hammerstein equations”, Bull. Am. Math. Soc., vol. 80, pp. 567-572.

20. Askhabov S. N. 2018, “Nonlinear itegral equations with potential-type kernels on a segment”, Journal of Mathematical Sciences, vol. 235, no. 4, pp. 375-391.

21. Askhabov S. N. 2011, “Approximate solution of nonlinear equations with weighted potential type operators”, Ufimskii Matematicheskii Zhurnal, vol. 3, no. 4, pp. 8-13.

22. Askhabov S. N. 2015, “Nonlinear Convolution-Type Equations in Lebesgue Spaces”, Matematicheskie Zametki, vol. 97, no. 5, pp. 643-654.


Review

For citations:


Askhabov S.N. Integral equations of fractional order with a variable external coefficient and monotonic nonlinearity. Chebyshevskii Sbornik. 2025;26(3):44-57. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-3-44-57

Views: 27


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)