Inertia tensor of a rigid body on the Lobachevsky plane and in pseudo-Euclidean space
https://doi.org/10.22405/2226-8383-2025-26-2-232-253
Abstract
The paper studies the inertia tensor of a rigid body in three-dimensional (pseudo-)Euclidean space (𝑉, 𝑔). The configuration manifold 𝑄 of the system is the six-dimensional Lie group E(𝑉, 𝑔) ∼= 𝑉 ⋋ Aut(𝑉, 𝑔) of isometries of this space, and the kinetic energy is a quadratic form 𝑇(𝑤, 𝑎) on the Lie algebra e(𝑉, 𝑔) ∼= 𝑉 + g where g = aut(𝑉, 𝑔). This allows one to define a symmetric operator 𝐽 : g → g* with the property 𝑇(0, 𝑎) = 1/2 (𝐽𝑎, 𝑎), referred to as the (covariant) inertia tensor of the rigid body. To compute this tensor, a “pseudo-Euclidean vector cross product” [, ]𝑔 is introduced in the (pseudo-)Euclidean space (𝑉, 𝑔), and an isomorphism 𝜇 : 𝑉 → g is constructed using this operation. It is proved that this isomorphism transforms the operation [, ]𝑔 into the Lie bracket on the Lie algebra g, and the scalar product into the Cartan–Killing form, up to a scalar factor. Explicit formulas for the operation [, ]𝑔 are obtained.
Using the operation [, ]𝑔, the operator ̃︀ 𝜔 = 𝜇𝜔 ∈ g of instantaneous rotation with angular velocity 𝜔 ∈ 𝑉 is defined. For any point 𝑞 ∈ 𝑉 , the vector 𝑣 = ̃︀ 𝜔𝑞 = [𝜔, 𝑞]𝑔 ∈ 𝑉 of instantaneous velocity, the vector 𝑀(𝑞) = [𝑞,𝑚𝑣]𝑔 ∈ 𝑉 of angular momentum and the inertia operator
̂︀ 𝐽(𝑞) : 𝑉 → 𝑉 , 𝜔 ↦→𝑀(𝑞), are defined. The symmetricity of the inertia operator ̂︀ 𝐽(𝑞) is proved, along with the formula 𝑇(𝑞) = 1/2 𝑔( ̂︀ 𝐽(𝑞)𝜔,𝜔) for the kinetic energy of the point.
Geometric properties of the inertia operator ̂︀ 𝐽 are studied for single- and multi-point bodies.
In particular, in the pseudo-Euclidean case, the restriction of the corresponding quadratic form to the interior of the light cone is shown to be non-negative. Examples of two- and three-point
bodies are constructed showing that there are no additional restrictions on the signature of the inertia operator. All possible signatures of the inertia operator ̂︀ 𝐽 for a rigid body in threedimensional pseudo-Euclidean space are found. It is proved that, for bodies located within the light cone (e.g., “plates” in the Lobachevsky plane), the inertia operator has a signature
of (−,+, +) or (0,+, +). For bodies located outside the light cone, signatures of (−, 𝑠,−) are possible for all 𝑠 ∈ {0,+, −}. The remaining signatures (−,+, 0) and (−, 0, 0) are also realized by two- and three-point bodies.
References
1. Kobb, G. 1895, “Sur le probleme de la rotation d’un corps autour d’un point fixe”, Bull. Soc. Math. France, vol. XXIII, pp. 210–215.
2. De Donder, T. 1942, “Mouvement d’un solide dans un espace Riemannien, 1 and 2”, Bull. Acad. Roy. Belg., vol. 28, pp. 8–16 and 60–66.
3. Goldstein, H. 1950, Classical Mechanics, Addison-Wesley, Reading, Massachusetts.
4. Arnold, V. I. 1989, Mathematical Methods of Classical Mechanics, Springer, New York.
5. Bolsinov, A. V. & Fomenko, A. T. 2004, Integrable Hamiltonian systems: geometry, topology, classification, Chapman & Hall /CRC, Boca Raton, London, N.Y., Washington.
6. Borisov, A. V., Mamaev, I. S. 2005, Rigid Body Dynamics. Hamiltonian Methods, Integrability, Chaos, Moscow, Institute of computer Science.
7. Arnold, V. I. & Khesin, B. A. 1998, Topological Methods In Hydrodynamics, Springer-Verlag, New York.
8. Vinberg, E. B. & Onishchik, A. L. 1990, Lie Groups and Algebraic Groups, Springer-Verlag, Berlin Heidelberg.
9. Vinberg, E. B. 1989, Linear Representations of Groups, Basler Lehrb¨ucher, Birkh¨auser, Basel.
10. Kirillov, A. A. 1968, “The characters of unitary representations of Lie groups”, Functional Analysis and its Applications, vol. 2, no. 2, pp. 133–146.
11. Marsden, J. E. & Ratiu, T. 1999, Introduction to Mechanics and Symmetry, Springer-Verlag, New York.
12. Borisov, A. V., Mamaev, I. S. 2007, “On isomorphisms of some integrable systems on a plane and a sphere” [in Russian], Russ. J. Nonlin. Dyn., vol. 3, no. 1, pp. 49–56.
13. Weyl, H. 1922, Space-Time-Matter, E.P. Dutton and Company, London.
14. Blaschke, W. 1942, Nicht-Euklidische Geometrie und Mechanik, I, II, III, Hamburger Mathematische Einzelschriften, vol. 34, B. G. Teubner, Leipzig-Berlin.
15. Borisov, A. V., Mamaev, I. S. 2016, “Rigid body dynamics in non-Euclidean spaces”, Russ. J. Math. Phys., vol. 23, pp. 431–454.
16. Killing, W. 1885, “Die Mechanik in den nicht-Euklidischen Raumformen”, J. Reine Angew. Math., vol. 98, pp. 1–48.
17. H¨older, E. 1956, “Die Dynamik des starren K¨orpers in einem nicht-Euklidischen Raum”, Abhandlungen aus dem Mathematischen Seminar der Universit¨at Hamburg, Springer Berlin Heidelberg, vol. 20, pp. 242–252.
18. Clifford, W. K. 1882, “Motion of a solid in elliptic space”, in: Math. Papers, Tucker, R. (Ed.), Macmillan, London, pp. 378–384.
19. Zhukovsky, N. E. 1937, On the motion of a material pseudospherical figure on the surface of a pseudosphere [in Russian], Pol. Sobr. Soch., vol. 1, pp. 490–535 [the original in Trudy Otdel. Fiz. Nauk Obshch. Lyubit. Estestvozn., Antropol. Etnogr. XI (2), 1902].
20. De Francesco, D. 1902, “Sul moto di un corpo rigido in uno spazio di curvatura costante”, Math. Ann., vol. 55, pp. 573–584.
21. Heath, R. S. 1884, “On the dynamics of a rigid body in elliptic space”, Philos. Trans. R. Soc. Lond., vol. 175, pp. 281–324.
22. Nagy, P. T. 1991, “Dynamical invariants of rigid motions on the hyperbolic plane”, Geom. Dedicata, vol. 37, pp. 125–139.
23. Salvai, M. 2000, “On the dynamics of a rigid body in the hyperbolic space”, J. Geom. Phys., vol. 36, no. 1–2, pp. 126–139.
24. Zitterbarth, J. 1991, “Some remarks on the motion of a rigid body in a space of constant curvature without external forces”, Demonstratio Math., vol. 24, no. 3–4, pp. 465–494.
25. Burov, A. A. 2008, “Motion of a body with a plane of symmetry on a three-dimensional sphere under the action of a spherical analog of Newtonian attraction”, Prikl. Mat. Mekh., vol. 72, no. 1, pp. 23–34.
26. Duboshin, G. N. 1969, Celestial Mechanics. Basic Problems and Methods [in Russian], Nauka, Moscow [Translation Div., Wright-Patterson Air-Force Base, Fairborn, Ohio].
27. Kostrikin, A. I. & Manin, Yu. I. 1989, Linear Algebra and Geometry, CRC Press, London.
28. Landau, L. D. & Lifshitz, E. M. 1976, Mechanics, Volume 1 of Course of Theoretical Physics, Butterworth-Heinemann, Oxford.
Review
For citations:
Shubert A.Yu. Inertia tensor of a rigid body on the Lobachevsky plane and in pseudo-Euclidean space. Chebyshevskii Sbornik. 2025;26(2):232-253. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-2-232-253