Preview

Chebyshevskii Sbornik

Advanced search

Classification of unsolvable Lie algebras with four-dimensional orbits of coadjoint representation

https://doi.org/10.22405/2226-8383-2025-26-2-141-159

Abstract

The paper presents a classification of Lie algebras with four-dimensional coadjoint orbits for Lie algebras that are isomorphic to a semidirect sum of a nontrivial semisimple Lie algebra and a nonzero solvable ideal.

About the Author

Fedor Igorevich Lobzin
Lomonosov Moscow State University; Moscow Center of Fundamental and Applied Mathematics
Russian Federation


References

1. Arnold V. I., “Mathematical Methods of Classical Mechanics”.

2. Konyaev A.Yu. 2014, “Classification of Lie algebras with generic orbits of dimension 2 in the coadjoint representation”, Sb. Math., Vol. 205, no. 1, pp. 45-62.

3. Fomenko A. T., Konyaev A. Y. 2014, “Geometry, dynamics and different types of orbits” J. Fixed Point Theory Appl., Vol. 15, pp. 49-66.

4. Bolsinov A. V., Zhang P. 2016, “Jordan–Kronecker invariants of finite–dimensional Lie algebras“, Transformation Groups., Vol. 21, pp. 51-86.

5. Galinski A. 2021, “Some metrics admitting nonpolynomial first integrals of the geodesic equation”, Physics Letters B., Vol. 820, pp.634050.

6. Agapov S., Shubin V. 2021, “Rational integrals of 2-dimensional geodesic flows: new examples”, Journal of Geometry and Physics., Vol. 170, pp. 104389.

7. Humphries J. “Introduction to the theory of Lie algebras and their representations”, Springer.

8. Vorontsov A. S. 2009, “Invariants of Lie algebras representable as semidirect sums with a commutative ideal” Sb. Math., Vol. 200, no. 8, pp. 1149–1164.

9. Vorushilov K. S 2017, “Jordan–Kronecker invariants for semidirect sums defined by standard representation of orthogonal or symplectic Lie algebras” Lobachevskii journal of Mathematics. Vol. 38, no. 6, pp. 1121–1130.

10. Vorushilov K. S 2019, “Jordan–Kronecker invariants for semidirect sums sl(𝑛) + (R𝑛)𝑘 и gl(𝑛) + (R𝑛)𝑘” Fundament. i prikl. of matem. Vol. 22, no. 6, pp. 3–18.

11. Bolsinov A. V., Matveev V. S., Miranda E., Tabachnikov S. 2018 Open problems, questions and challenges in finitedimensional integrable systems // Phil. Trans. R. 2018. vol.376.

12. Lobzin F. I. 2024 “Construction of polynomials in bi-involution for singular elements of the space conjugate to Lie algebra” Sb. Math.

13. Mishchenko A. S. Fomenko A. T. 1978, “Euler equations on finite-dimensional Lie groups”, Math. USSR-Izv., Vol. 12, no. 2, pp. 371-389.

14. Lobzin F.˜I. 2023, “Verification of the generalized hypothesis of Mishchenko–Fomenko for Lie algebras of small dimension” Chebyshevskii sbornik, Vol. 24, no 5, pp. 126–135.


Review

For citations:


Lobzin F.I. Classification of unsolvable Lie algebras with four-dimensional orbits of coadjoint representation. Chebyshevskii Sbornik. 2025;26(2):141-159. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-2-141-159

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)