Convex Polyhedra of Binary Trees and their Symmetries
https://doi.org/10.22405/2226-8383-2025-26-2-101-124
Abstract
About the Authors
Alexandr Olegovich IvanovRussian Federation
doctor of physical and mathematical sciences, professor
Dmirtii Alexeevich Markhanov
Russian Federation
References
1. Ivanov, A.O., Tuzhilin, A.A., 2003, Extreme Networks Theory, Moscow-Izhevsk: Regul. i Khaot. Dinamika [in Russian].
2. Ivanov, A.O., Tuzhilin, A.A., 2012, “One-dimensional Gromov Minimal Filling Problem”, Sbornik Math., vol. 203, no. 5, pp. 65–118. DOI: https://doi.org/10.1070/SM2012v203n05ABEH004239.
3. Ivanov, A.O., Ovsyannikov, Z.N., Strelkova, N.P., Tuzhilin, A.A., 2012, “One-dimensional Minimal Fillings with Negative Edge Weights”, Moscow Univ. Math. Bull., vol. 67, no. 5–6, pp. 189–194. DOI: https://doi.org/10.3103/S0027132212050014.
4. Ivanov, A., Tuzhilin, A., 2021, “Dual Linear Programming Problem and One-Dimensional Gromov Minimal Fillings of Finite Metric Space”, in Trends in Mathematics, Cham: Springer, pp. 165–182. arXiv:1907.03828 [math.MG] (2019).
5. Gromov, M., 1983, “Filling Riemannian Manifolds”, J. Diff. Geom., vol. 18, no. 1, pp. 1–147. DOI: 10.4310/jdg/1214509283.
6. Ivanov, A.O., Tuzhilin, A.A., 2014, “Minimal Fillings of Finite Metric Spaces: The State of the Art”, in Discrete Geometry and Algebraic Combinatorics, AMS, vol. 625, pp. 9–35.
7. Bednov, B.B., Borodin, P.A., 2014, “Banach Spaces that Realize Minimal Fillings”, Sb. Math., vol. 205, no. 4, pp. 459–475. DOI: https://doi.org/10.1070/SM2014v205n04ABEH004383.
8. Eremin, A.Yu., 2013, “A Formula for the Weight of a Minimal Filling of a Finite Metric Space”, Sb. Math., vol. 204, no. 9, pp. 1285–1306. DOI: https://doi.org/10.1070/SM2013v204n09ABEH004340.
9. Shcherbakov, O.S., 2022, “Polyhedra of Binary Trees, Structure of the Polyhedron for a Tree of the “Snake” Type”, Chebyshev. Sbornik, vol. 23, no. 4, pp. 136–151 [in Russian]. DOI: https://doi.org/10.22405/2226-8383-2022-23-4-136-151.
10. Shcherbakov, O.S., 2025, “Upper Estimates on the Multiplicities of Irreducible Multitours for Some Binary Trees”, Moscow Univ. Math. Bull. [in Russian, to appear].
11. Ivanov, A.O., Shcherbakov, O.S., 2024, “Existence of Irreducible Multitours of Multiplicity 2”, Chebyshev. Sbornik, vol. 25, no. 3, pp. 101–117.
12. Bednov, B.B., 2017, “The Length of Minimal Filling for a Five-Point Metric”, Moscow University Math. Bull., vol. 72, no. 6, pp. 221–225. DOI: https://doi.org/10.3103/S0027132217060018.
13. Vasiliev, F.P., Ivanitskii, A.Yu., 1998, Linear Programming, Moscow: Factorial Press.
14. Hwang, F.K., 1986, “A Linear Time Algorithm for Full Steiner Trees”, Operations Research Letters, vol. 4, no. 5, pp. 235–237. DOI: https://doi.org/10.1016/0167-6377(86)90008-8.
15. Vinberg, E.B., 2003, A Course in Algebra, New York: AMS.
16. Malysheva, O.S., 2020, “Optimal position of compact sets and the Steiner problem in spaces with Euclidean Gromov–Hausdorff metric”, Sb. Math., vol. 211, no. 10, pp. 1382–1398. DOI:https://doi.org/10.1070/SM9361.
Review
For citations:
Ivanov A.O., Markhanov D.A. Convex Polyhedra of Binary Trees and their Symmetries. Chebyshevskii Sbornik. 2025;26(2):101-124. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-2-101-124