Preview

Chebyshevskii Sbornik

Advanced search

Diffraction of a cylindrical sound wave on a multilayered spheroid

https://doi.org/10.22405/2226-8383-2025-26-1-190-203

Abstract

The article considers the problem of diffraction of a harmonic cylindrical sound wave on a multilayered spheroid is considered. The multilayered spheroid consist from an absolutely rigid spheroid and surrounding homogeneous spheroidal layers of an ideal compressible liquid. It is assumed that the spheroid is in an infinite ideal liquid. A cylindrical wave is emitted by an infinitely long linear source parallel to the axis of rotation of the spheroid.
The problem is solved in an elongated spheroidal coordinate system. An analytical solution of the problem has been obtained. A special case of a two-layer spheroid is considered.

About the Authors

Lev Alexeevich Tolokonnikov
Tula State University
Russian Federation

doctor of physical and mathematical sciences, professor



Sergei Lvovich Tolokonnikov
Lomonosov Moscow State University
Russian Federation

doctor of physical and mathematical sciences, professor



References

1. Spence, R. D., Granger, S. 1951, “The scattering sound from a prolate spheroid”, Acoust. Soc.

2. Amer., vol. 23, no. 6, pp. 701 – 706.

3. Einspruch, N. G., Barlow, C. A. 1961, “Scattering of a compressional wave by a prolate spheroid”,

4. Quart. J. Appl. Math., vol. 19. no. 3, pp. 253 – 258.

5. Senior, T. B. A. 1966, “The scattering from acoustically hard and soft prolate spheroids for axial

6. incidence”, Can. J. Phys., vol. 44, no. 3, pp. 657 – 667.

7. Kleshchev, A. A., Sheiba, L. S. 1970, “Scattering of a sound wave by ideal prolate spheroids”,

8. Soviet Phys. Acoust., vol. 16, no. 2, pp. 219 – 222.

9. Andebura, V. A., Ostashevskii, A.P. 1974, “Scattering of sound hy rigid prolate spheroids”,

10. Akust. Zhurn., vol. 20, no. 2, pp. 179 – 183, [in Russian].

11. Varadan, V. K., Varadan, V. V., Dragonette, L. R., Flax L. 1982, “Computation of rigid body

12. scattering by prolate spheroids using the T-matrix approach”, J. Acoust. Soc. Amer., vol. 71,

13. no. 1, pp. 22 – 25.

14. Barton, J.P., Wolf, N. L., Zhang, Н., Tarawneh, С. 2003, “Near-field calculations for a rigid

15. spheroid with an arbitrary incident acoustic field”, J. Acoust. Soc. Amer., vol. 113. no. 3,

16. pp. 1216 – 1222.

17. Roumeliotis, J. A., Kotsis, A. D., Kolezas G. 2007, “Acoustic Scattering by an Impenetrable

18. Spheroid”, Akust. Zhurn., vol. 53, no. 4, pp. 500 – 513, [in Russian].

19. Senior, T. B. A. 1960, “Scalar diffraction by a prolate spheroid at low frecuencies”, Can. J. Phys.

20. vol. 38, no. 12, pp. 1632 – 1641.

21. Burke, J. E. 1966, “Low-frequency scattering by soft spheroids”, J. Acoust. Soc. Amer. vol. 39,

22. no. 5, pp. 826 – 831.

23. Burke, J. E. 1966, “Long-wavelength scattering by hard spheroids”, J. Acoust. Soc. Amer.,

24. vol. 40, no. 2, pp. 325 – 330.

25. Asvestas, J. S., Kleinman, R. E. 1969, “Low frequency scattering by spheroids and disks. 1.

26. Dirichleet problem for a prolate spheroid”, J. Inst. Math. Appl., vol. 6, no. 1, pp. 42 – 56.

27. Asvestas, J. S., Kleinman, R. E. 1969, “Low frequency scattering by spheroids and disks. 2.

28. Neumann problem for a prolate spheroid”, J. Inst. Maths. Appl., vol. 6, no. 1, pp. 57 – 75.

29. Gatkin, N. G., Paramonova, S. N., P’yanov, V. M. 1971, “Scattering of sound by rigid prolate

30. spheroids”, Akust. Zhurn., vol. 17, no. 3, pp. 371 – 378, [in Russian].

31. Sammelmann, G. S., Trivett, D. H., Hackmann, R. H. 1988, “High-frequency scattering from

32. rigid prolate spheroids”, J. Acoust. Soc. Amer., vol. 83, no. 1, pp. 46 – 54.

33. Lauchle, G. C. 1975, “Short-wavelength acoustic diffraction by prolate spheroids”, J. Acoust.

34. Soc. Amer., vol. 58, no. 3, pp. 568 – 575.

35. Lauchle, G. C. 1975, “Short-wavelength acoustic backscattering by a prolate spheroid”,

36. J. Acoust. Soc. Amer., vol. 58, no. 3, pp. 576 – 580.

37. Tolokonnikov, L. A. 1975, “Scattering of cylindrical sound waves on a spheroid”, Applied

38. Mathematics, no. 3, pp. 3 – 9, Tula Politech. Inst., Tula, [in Russian].

39. Kleshev, A. A. 1973, “Scatterer in the field of a point source”, Akust. Zhurn., vol. 19, no. 3,

40. pp. 455 – 457, [in Russian].

41. Blake, W. K., Wilson, G. A. 1977, “Short-wavelength diffracted surface pressures on a rigid

42. prolate spheroid”, J. Acoust. Soc. Amer., vol. 61, no. 6, pp. 1419 – 1426.

43. German A., Lauchle, G. C. 1979, “Axisymmetric scattering of spherical waves by a prolate

44. spheroid”, J. Acoust. Soc. Amer., vol. 65, no. 5, pp. 1322 – 1327.

45. Kleshchev, A. A. 1974, “Diffraction of sound on bodies with mixed boundary conditions”, Akust.

46. Zhurn., vol. 20, no. 4, pp. 632 – 634, [in Russian].

47. Tolokonnikov, L. A. 1998, “Sound scattering on a spheroid with mixed boundary conditions”,

48. Izv. Tul. Gos. Univ. Ser. Math. Mech. Inform., vol. 4, no. 1, pp. 139 – 142, [in Russian].

49. Tolokonnikov, L. A. 2005, “Scattering of cylindrical and spherical sound waves by a spheroid

50. with mixed boundary conditions”, Izv. Tul. Gos. Univ. Ser. Math. Mech. Inform., vol. 11, no.

51. , pp. 201 – 207, [in Russian].

52. Yeh, C. 1967, “Scattering of acoustic waves by a penetrable prolate spheroid. I. Liquid prolate

53. spheroid”, J. Acoust. Soc. Amer., vol. 42, no. 2, pp. 518 – 521.

54. Burke, J. E. 1968, “Scattering by penetrable spheroids”, J. Acoust. Soc. Amer., vol. 43, no. 4,

55. pp. 871 – 875.

56. Rodionova, G. A., Tolokonnikov, L. A. 1989, “Sound scattering by a rotating spheroid”, Akust.

57. Zhurn., vol. 35, no. 5, pp. 895 – 899, [in Russian].

58. Kotsis, A. D., Roumeliotis, J. A. 2008, “Acoustic Scattering by a Penetrable Spheroid”, Akust.

59. Zhurn., vol. 54, no. 2, pp. 189 – 204, [in Russian].

60. Flax, L., Dragonette, L., Varadan, V. K., Varadan, V. V. 1982, “Analysis and computation of

61. the acoustic scattering by an elastic prolate spheroid obtained from the T-matrix formulation”,

62. J. Acoust. Soc. Amer., vol.71, no. 5, pp. 1077 – 1082.

63. Kleshchev, A. A. 1986, “Three dimensional and two-dimensional (axis symmetrical) characteristics

64. of elastic spheroidal scatterers”, Akust. Zhurn., vol. 32, no. 2, pp. 268 – 270, [in Russian].

65. Kleshchev, A. A., Rostovtsev, D. M. 1986, “Sound scattering by solid and liquid ellipsoidal shells

66. of revolution”, Akust. Zhurn., vol. 32, no. 5, pp. 691 – 694, [in Russian].

67. Werby, M., Graunard, G. 1987, “Classification of resonances in the scattering from submerged

68. spheroidal shells insonified at arbitrary angles of incidence”, J. Acoust.Soc. Amer., vol.82, no.

69. , pp. 1369 – 1377.

70. Hackman, R. H., Sammelmann, G. S., Williams, K. L., Trivett, D. H. 1988, “A reanalysis of the

71. acoustic scattering from elastic spheroids”, J. Acoust. Soc. Amer., vol. 83, no. 4, pp. 1255 –

72.

73. Rozhdestvenskii, K. N., Tolokonnikov, L. A. 1990, “Acoustic scattering by an elastic spheroid”,

74. Soviet Physics. Acoustics, vol. 36, no. 5, pp. 515 – 516.

75. Tolokonnikov, L. A., Skobel’tsyn, S. A. 1991, “Diffraction of a plane sound wave on an elastic

76. spheroid at an inclined incidence”, Differ. equations and appl. probl., pp. 113 – 119, Tula

77. Politech. Inst., Tula, [in Russian].

78. Bao, X L., Uherall, H., Niemiec, 1997, J. “Experimental study of sound scattering by elastic

79. spheroids”, J. Acoust. Soc. Amer., vol. 102, no. 2, pp. 933 – 942.

80. Tolokonnikov, L. A. 2011, “Diffraction of a plane sound wave on an elastic spheroid with an

81. arbitrary located spherical cavity”, Izv. Tul. Gos. Univ. Ser. Estestv. Nauki, no. 2, pp. 169 –

82. , [in Russian].

83. Hackman, R. H., Werby, M. F. 1984, “Nearfield effects in acoustic scattering”, J. Acoust. Soc.

84. Amer., vol. 75, no. 3, pp. 1001 – 1003.

85. Tolokonnikov, L. A. 2011, “Scattering of cylindrical and spherical sound waves by a elastic

86. spheroid with an arbitrary located spheroidal cavity”, Vest. Tul. Gos. Univ. Ser. Math. Mech.

87. Inform., vol. 17, no. 1, pp. 78 – 84, [in Russian].

88. Yeh, C. 1969, “Scattering by liquid-coated prolate spheroids”, J. Acoust. Soc. Amer., vol. 46,

89. no. 3, pp. 797 – 801.

90. Charalambopoulos, A., Dassios, G., Fotiadis, D. I., Massalas, C. V. 2001, “Scattering of a point

91. generated field by a multilayered spheroid”, Acta Mech., vol. 150, no. 2, pp. 107 – 119.

92. Charalambopoulos, A., Fotiadis, D. I., Massalas, C. V. 2002, “Scattering of a point generated

93. field by kidney stones”, Acta Mech., vol. 153, no. 1, pp. 63 – 77.

94. Flammer, C. 1957, “Spheroidal Wave Functions”, Stanford University Press, Stanford, 220 p.

95. Mors, P. M., Feshbach, H. 1953, “Methods of Theoretical Physics”, vol. 2, McGraw-Hill, New

96. York, 1001 p.

97. Shenderov, E. L. 1972,“Wave problems of underwater acoustics”, Sudostroenie, Leningrad, 352 p.

98. [in Russian].

99. Kantorovich, L. V., Krilov, V. I. 1962, “Approximate methods of higher analysis”, Fizmatgiz ,

100. Moscow, 708 p., [in Russian].

101. Lebedev, N. N. 1963, “Special Functions and their Applications”, Fizmatgiz, Moscow, 358 p.,[in

102. Russian].


Review

For citations:


Tolokonnikov L.A., Tolokonnikov S.L. Diffraction of a cylindrical sound wave on a multilayered spheroid. Chebyshevskii Sbornik. 2025;26(1):190-203. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-1-190-203

Views: 24


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)