Smooth variety of lattices
https://doi.org/10.22405/2226-8383-2025-26-1-99-115
Abstract
In the previous work of the authors, the foundations of the theory of smooth manifolds of number-theoretic lattices were laid. The case of arbitrary multidimensional lattices was considered.
This article considers the general case of shifted multidimensional lattices. Note that the geometry of the metric spaces of multidimensional lattices is much more complicated than the geometry of ordinary Euclidean space. This is evident from the paradox
of non-additivity of the length of a segment in the space of shifted one-dimensional lattices. From the presence of this paradox it follows that the problem of describing geodesic lines in spaces of multidimensional lattices remains open, as well as finding a formula for the length of arcs of lines in these spaces. Naturally, it would be interesting not only to describe these objects, but also to obtain a number-theoretic interpretation of these concepts. A further direction of research may be the study of the analytic continuation of the
hyperbolic zeta function on the spaces of shifted multidimensional lattices. As is known, the analytic continuation of the hyperbolic zeta functions of lattices are constructed for an arbitrary Cartesian lattice. Even the question of the continuity of these analytical continuations in the left half-plane on the space of lattices has not been studied. All of these, in our opinion, are relevant directions for further research.
About the Authors
Elena Nikolaevna SmirnovaRussian Federation
Olga Alexandrovna Pikhtilkova
Russian Federation
candidate of physics and mathematics sciences
Nikolai Nikolaevich Dobrovol’skii
Russian Federation
candidate of physical and mathematical sciences
Irina Yuryevna Rebrova
Russian Federation
candidate of physical and mathematical sciences
Nikolai Mihailovich Dobrovol’skii
Russian Federation
doctor of physical and mathematical sciences, professordoctor of physical and mathematical sciences, professor
References
1. Arnold V. I., 1975, “Ordinary differential equations”, M .: Science, 240 p.
2. Dobrovol’skaya, L. P., Dobrovol’skii, M. N., Dobrovol’skii, N. M. & Dobrovol’skii, N. N. 2012, “The hyperbolic Zeta function of grids and lattices, and calculation of optimal coefficients”, Chebyshevskij sbornik, vol. 13, no. 4(44), pp. 4–107.
3. Dobrovol’skii, N. M. 1984, “Evaluation of generalized variance parallelepipedal grids”, Dep. v VINITI, no. 6089–84.
4. Dobrovol’skii, N. M. 1984, “On quadrature formulas in classes 𝐸𝛼 𝑠 (𝑐) and 𝐻𝛼 𝑠 (𝑐)”, Dep. v VINITI, no. 6091–84.
5. Dobrovolskiy N. M. Hyperbolic zeta function of lattices. Dep. in VINITI 08.24.84, no. 6090-84.
6. Dobrovolsky N. M. “Multidimensional number-theoretic grids and lattices and their applications to approximate analysis”, Sb. IV International conference glqq Modern problems of number theory and its applications grqq dedicated to the 180th anniversary of P. L. Chebyshev and 110th anniversary of I. M. Vinogradov. Tula, 10 — 15 September, 2001 Actual problems Ch. I.
7. M. MGU, 2002. p. 54–80.
8. Dobrovol’skii, N. M. 2005, Mnogomernye teoretiko-chislovye setki i reshyotki i ikh prilozheniya [Multidimensional number-theoretic grids and lattices and their applications], Izdatel’stvo Tul’skogo gosudarstvennogo pedagogicheskogo universiteta imeni L.N.Tolstogo, Tula, Russia.
9. N. M. Dobrovolsky, N. N. Dobrovolsky, V. N. Soboleva, D. K. Sobolev, L. P. Dobrovol’skaya, O. E. Bocharova, 2016, “On hyperbolic Hurwitz zeta function” , Chebyshevskii sbornik, vol 17, no. 3, P. 72—105.
10. Dobrovol’skii N.M., Manokhin E.V., Rebrova I. Yu., Roshchenya A.L., 2001, “On the continuity of the zeta function of a grid with weights”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 7, no. 1, pp. 82–86.
11. Dobrovol’skij, N.M., Rebrova, I.YU. & Roshhenya, А.L. 1998, “Continuity of the hyperbolic zeta function of lattices“, Matematicheskie zametki (Mathematical Notes), vol. 63, no. 4, pp. 522–526.
12. N. M. Dobrovol’skii, A. L. Roshchenya, “Number of lattice points in the hyperbolic cross”, Math. Notes, 63:3 (1998), 319–324.
13. Dobrovolskiy N. M., Roshchenya A. L., 1995, “On the number of points of a lattice in a hyperbolic cross”, Algebraic, probabilistic, geometric, combinatorial and functional methods in number theory: Collected tez. report II Int. conf. Voronezh, p. 53.
14. Dobrovol’skii N. M., Roshchenya A. L., 1996, “On the continuity of the hyperbolic zeta-function of lattices”, Izv. Toole. state un-that. Ser. Mathematics. Mechanics. Computer science. T. 2. Issue 1. Tula: Publishing house of Tula State University, p. 77–87.
15. Kassels, D. 1965, Vvedenie v geometriyu chisel, [Introduction to the geometry of numbers], Mir, Moscow, Russia.
16. A. N. Kormacheva, 2020, “Approximation of quadratic algebraic lattices by integer lattices — II” , Chebyshevskii sbornik, vol. 21, no. 3, pp. 215–222.
17. Korobov, N.M. 1963, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], Fizmat-giz, Moscow, Russia.
18. Korobov, N.M. 2004, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], 2nd ed, MTSNMO, Moscow, Russia.
19. Rebrova, I. YU. 1998, “The continuity of the generalized hyperbolic zeta lattice function and its analytic continuation“, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 4, no. 3, pp. 99–108.
20. E. N. Smirnova, O. A. Pikhtilkova, N. N. Dobrovolsky, N. M. Dobrovolsky., 2017, “Algebraic lattices in the metric space of lattices”, Chebyshev sb., vol. 18, no. 4, p. 326–338.
21. E. N. Smirnova, O. A. Pikhtil’kova, N. N. Dobrovol’skii, I. Yu. Rebrova, N. M. Dobrovol’skii, 2020, “Smooth manifold of one-dimensional lattices” , Chebyshevskii sbornik, vol. 21, no. 3, pp. 165–185.
22. E. N. Smirnova, O. A. Pikhtil’kova, N. N. Dobrovol’skii, I. Yu. Rebrova, A. V. Rodionova, L. D. Sitnikova, N. M. Dobrovol’skii, 2021, “Smooth manifold of one-dimensional shifted lattices” , Chebyshevskii sbornik, vol. 22, no. 3, pp. 196–231.
23. E. N. Smirnova, O. A. Pikhtil’kova, N. N. Dobrovol’skii, I. Yu. Rebrova, N. M. Dobrovol’skii, 2023, “Smooth diversity of lattices”, Chebyshevskii sbornik, vol. 24, no. 4, pp. 299–310.
24. Warner F. Foundations of the theory of smooth manifolds and Lie groups. — M .: Mir, 1987. — 304 p.
25. Shmeleva, T. S., 2009, “Continuity of the hyperbolic parameter of lattices” , Izvestiya Tula State University. Natural sciences, Issue 3. pp. 92–99.
26. L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovol’skii, N. N. Dobrovolsky, 2014, “On Hyperbolic Zeta Function of Lattices” . In: Continuous and Distributed Systems. Solid Mechanics and Its Applications. Vol. 211. P. 23–62. DOI:10.1007/978-3-319-03146-0_2.
Review
For citations:
Smirnova E.N., Pikhtilkova O.A., Dobrovol’skii N.N., Rebrova I.Yu., Dobrovol’skii N.M. Smooth variety of lattices. Chebyshevskii Sbornik. 2025;26(1):99-115. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-1-99-115