On the asymptotics of representations by a sum of a pair of integers by a sum and a linear form with a congruential condition of a special form
https://doi.org/10.22405/2226-8383-2025-26-1-62-75
Abstract
In the work, asymptotic formulas with a remainder term are obtained for the number of representations of a pair of integers 𝑚 and 𝑛, respectively, as a sum of 𝑠 ⩾ 5 variables, and each solution of such a Diophantine system satisfies the congruential a condition of a special type, associated in a certain way with a linear form.
Asymptotic formulas with a remainder term for the number of solutions of such a Diophantine system are derived for 𝑁 → ∞, where 𝑁 = Δ𝑚 − 𝑛2 and Δ equals the sum of the squares on the coefficients on the linear form. In addition, two-sided lower and upper bounds are obtained for a special series of Diophantine system under study based on the upper bound based on formulas for the number of solutions of
a congruence of the second degree modulo the power 𝑥21+ . . . + 𝑥2𝑠 ≡ 𝑎 (mod 𝑝𝑘) of the prime number, where 𝑎 is natural number.
This work is a continuation of a previous study, relating to the case of an even number of variables.
About the Authors
Urusbi Mukhamedovich PachevRussian Federation
doctor of physical and mathematical sciences, professor
Azamat Khasanovich Kodzokov
Russian Federation
Mariana Malilovna Isakova
Russian Federation
candidate of physical and mathematical sciences
Marina Sefovna Nirova
Russian Federation
candidate of physical and mathematical sciences
References
1. Vinogradov, I. M. 1929. “On one class of aggregate Diophantine equations”, Izv. Academy of Sciences of the USSR, pp. 355–376.
2. Vinogradov, I. M. 1952, “Selected works”, Publishing house of the USSR Academy of Sciences, pp. 151–168.
3. Marjanishvilli, K. K. 1937, “On the simultaneous representation of complete first second, . . . , 𝑛-th degrees”, Izv. AN SSSR, ser. Mat., 4, pp. 609–634.
4. Pall, G. 1931, “Simultaneous quadratic and linear representations”, Quart. J. Math., 2, pp. 136–143.
5. Pall, G. 1941, “Simultaneous representations in a quadratic and linear form”, Duke Math. J. S., pp. 173–180.
6. Kloosterman, H. 1942, “Simultane Darstellung zweier ganzen Zahlen al seiner Samme von ganzen Zahlen und deren Quadrat–Summe”, Math. Ann., 118, pp. 319–364.
7. de Bruijn, N. G. 1943, “Over het a antal oplossingen van het stelsel 𝑥21 + 𝑥22 + 𝑥23 = 𝑛, 𝑥1 + 𝑥2 + 𝑥3 = 𝑚”, Nieuw. Arch. Wisk, (2)22, pp. 53–56.
8. Bronkhorst, P. 1943 “Over het a antal oplossingen van het stelsel Diophatische Vergelijkinder 𝑥21 + . . . + 𝑥2 𝑠 = 𝑛, 𝑥1 + . . . + 𝑥𝑠 = 𝑚 vor 𝑠 = 6 en 𝑠 = 8”, Diss. Groningen.
9. Van der Blij. 1947, “On the theory of simultaneous linear and quadratic representation I–II”, Proc. Kon. Acad. V. Wet., 50, pp. 31–48.
10. Lomadze, G.A, 1950, “On the simultaneous representation of two integers by sums of integers and their squares”, Proceedings of the Tbilisi Mathematical Institute, 18, pp. 153–181.
11. Voronetsky, A. B., Malyshev A. V. 1976, “On the simultaneous representation of a pair of numbers by sums of integers and their squares”, Proceedings of the Steklov Mathematical Institute of the USSR, 142, pp. 122–134.
12. Malyshev, A. V. 1962, “On the representation of integers by positive quadratic forms”, Proceedings of the Steklov Mathematical Institute of the USSR, V. 65, pp. 3–212.
13. Malyshev, A. V. 1974, “On formulas for the number of representations of numbers by positive quadratic forms”, Actual problems of analytical number theory. Minsk. Science and Technology.
14. Valfish, A. Z. 1952, “On the representation of squares. Asymptotic formulas”, Uspekhi Matematicheskikh Nauk, 7, № . 6, pp. 97–178.
15. Walfisz, A. A. 1979, “ ¨Uber die simultane Darstellung zweier ganzen Zahlen durch quadratische und lineare Formen”, Acta Arithmetica XXXV, pp. 289–301.
16. Pachev, U. M., Khalilova L, A. 2022, “On the asymptotics on the number of representations of a pair of integers by quadratic and linear forms with a congruent condition”, Mathematical notes, Vol. 111, Iss. 5, pp. 726–737.
17. Urusbi Pachev, Rezuan Dokhov, Asamat Kodzokov. 2024, “On Diophantine Systems with Sum of Squares and Linear Forms Satisfying a Congruential Condition of a Special Form”, Current Problems of Applied Mathematics and Computer Systems, pp. 3–10.
18. Lidl, R., Niederreiter G. 1988, “Finite fields”, M.:Mir, Vol. 1.
19. Mulnor, J., Huesmoller D, 1986, “Symmetric bilinear forms”, M.:Science.
20. Siegel, C. L. 1966, “Gesammelte Abhandlungen, I”, Berlin; Heidelberg; Springer–Verlag, pp. 326–405.
21. Podsypanin, E. V. 1975, “On the singular series in the problem of representing a system of numbers by a system”, Notes of scientific seminars LOMI, V. 50, pp. 130–136.
22. Birch, B. J. 1962, “Forms in many variables”, Proc. Roy. Soc. A., 265, pp. 245–263,
23. Watson, G. L. “Quadratische Diophantine equations”, Phil. Trans. Roy. Soc. London A., 253, pp. 227–254.
Review
For citations:
Pachev U.M., Kodzokov A.Kh., Isakova M.M., Nirova M.S. On the asymptotics of representations by a sum of a pair of integers by a sum and a linear form with a congruential condition of a special form. Chebyshevskii Sbornik. 2025;26(1):62-75. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-1-62-75