On some analogue of the Gelfond problem for Zeckendorf representations
https://doi.org/10.22405/2226-8383-2024-25-5-195-215
Abstract
A.O. Gelfond proved that if 𝑏−1 and 𝑑 are coprime, the sums of digits of the 𝑏-ary expressions of natural numbers are uniformly distributed over arithmetic progressions with difference 𝑑. He also obtained a power estimate for the remainder term in this problem.
We consider an analogue of Gelfond’s problem for Zeckendorf representations of naturals as a sum of Fibonacci numbers. It is shown that in this case we again have the uniform distribution of the sums of digits over arithmetic progressions.
Moreover, in the case when the difference of the arithmetic progression 𝑑 is equal to 2, it was previously proved that the remainder term of the problem is logarithmic. In the present paper, it is shown that for 𝑑 ≥ 3 the remainder term of the problem is a power and an unimprovable in order estimate for it is found.
The proof is based on the detailed study of the remainder term at the Fibonacci numbers. It is shown that the remainder term at an arbitrary point can be estimated through the values of the remainder term in points equal to Fibonacci numbers. For them, it is possible to obtain a linear recurrence relation with constant coefficients, and, moreover, and an exact formula in terms of some Vandermonde determinants connected with the roots of the characteristic
polynomial.
Moreover, quite surprisingly, the linear recurrence relation for the remainder term at the Fibonacci points turns out to be connected with some combinatorial triangles, similar to Pascal’s triangle.
About the Author
Anton Vladimirovich ShutovRussian Federation
doctor of physical and mathematical sciences
References
1. Gelfond, A. O. 1968, “Sur les nombres qui ont des propri´et´es additives et multiplicatives donn´ees (French)”, Acta Aithmetica, vol. 13, no.3, pp. 259-265. (https://doi.org/10.4064/aa-13-3-259- 265).
2. Fine, N. J. 1965, “The distribution of the sum of digits (mod 𝑝)”, Bulletin of the American
3. Mathematical Society, vol. 71, no. 4, pp. 651-652.
4. Zeckendorf, E. 1972, “Representation des nombres naturels par une somme de nombres de
5. Fibonacci ou de nombres de Lucas (French)”, Bull. Soc. R. Sci. Liege, vol. 41, pp. 179-182.
6. Ostrowski, A. 1922, “Bemerkungen zur Theorie der diophantischen Approximationen (German)”, Abh. Math. Semin. Hamburg Univ., vol. 1, pp. 77-98. (https://doi.org/110.1007/
7. BF02940581).
8. Drmota, M. & Ska0142 ba, M. 2000, “The Parity of the Zeckendorf Sum-of-Digits-Function”,
9. Manuscripta Mathematica, vol. 101, pp. 361–383. (https://doi.org/10.1007/s002290050221).
10. Shutov, A. V. 2020, “On sum of digits of the Zeckendorf representations of two consecutive
11. numbers”, Fibonacci Quarterly, vol. 58, no. 3, pp. 203-207.
12. Stoll, T. 2013, “Combinatorial constructions for the Zeckendorf sum of digits of polynomial
13. values”, The Ramanujan Journal, vol. 32, pp. 227-243. (https://doi.org/10.1007/s11139-012-
14. -6).
15. Jamet, D. & Popoli, P. & Stoll, T. 2021, “Maximum order complexity of the sum of digits
16. function in Zeckendorf base and polynomial subsequences”, Cryptogr. Commun., vol. 13, pp
17. –814. (https://doi.org/10.1007/s12095-021-00507-w).
18. Shutov, A. V. 2020, “On one sum associated with Fibonacci numeration system (Russian)”,
19. Dal’nevost. Mat. Zh., vol. 20, no. 2, pp. 271-275. (https://doi.org/10.47910/FEMJ202028).
20. Zhukova, A. A. & Shutov, A. V. 2022, “An analogue of Eminian’s problem for the Fibonacci
21. number system (Russian)”, Chebyshevskii Sbornik, vol. 23, no. 2, pp. 88-105. (https://doi.org/
22. 22405/2226-8383-2022-23-2-88-105).
23. Coquet, J., Toffin, Ph. 1981, “Repr´esentations des entiers naturels et independance statistique (French)”, Bull. Sci. Math., II. Ser., vol. 105, pp. 289-298,
24. Coquet, J., Rhin, G., Toffin, Ph. 1981, “Repr´esentations des entiers naturels et ind´ependance statistique 2 (French)”, Annales de l’institut Fourier, vol. 31, no. 1, pp. 1-15. (https://doi.org/10.5802/aif.814).
25. Coquet, J., Rhin, G., Toffin, Ph. 1983, “Fourier-Bohr Spectrum of Sequences Related to
26. Continued Fractions”, Journal of Number Theory, vol. 17, no. 3, pp. 327-336. (https://doi.org/
27. 1016/0022-314x(83)90050-1).
28. Lamberger, M. & Thuswaldner, J. W. 2003, “Distribution properties of digital expansions arising from linear recurrences”, Mathematica Slovaca, vol. 53, no. 1, pp. 1-20.
29. Zhukova, A. A. & Shutov, A. V. 2021, “On Gelfond-type problem for generalized Zeckendorf representations (Russian)”, Chebyshevskii Sbornik, vol. 22, no. 2, pp. 104-120.
30. Chu, H. V. 2021. “Partial Sums of the Fibonacci Sequence”, Fibonacci Quarterly, vol. 59, no. 2, pp. 132-135.
31. OEIS Foundation Inc. 2024. “Entry A105809 in The On-Line Encyclopedia of Integer
32. Sequences”, https://oeis.org/A105809.
33. Honsberger, R. 1978, “Mathematicals morsels”, Mathematical Association of America.
Review
For citations:
Shutov A.V. On some analogue of the Gelfond problem for Zeckendorf representations. Chebyshevskii Sbornik. 2024;25(5):195-215. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-5-195-215