Preview

Chebyshevskii Sbornik

Advanced search

Asymptotic formula in generalization of ternary Esterman problem with almost proportional summands

https://doi.org/10.22405/2226-8383-2024-25-4-120-137

Abstract

For 𝑛 ≥ 3, an asymptotic formula for the number of representations of a sufficiently large natural number 𝑁 in the form 𝑝_1 + 𝑝_2 + 𝑚^𝑛 = 𝑁, is obtained. Here 𝑝_1, 𝑝_2 are prime numbers, and 𝑚 is a natural number, satisfying the following conditions

About the Author

Firuz Zarulloevich Rakhmonov
A. Dzhuraev Institute of Mathematics
Tajikistan

candidate of physical and mathematical sciences



References

1. Estermann, T. 1937, “Proof that every large integer is the sum of two primes and square”, Proc. London math.Soc., vol. 11, pp. 501-516.

2. Rakhmonov, Z. Kh. 2003, “Estermann’s ternary problem with almost equal summands”, Mathematical Notes, vol. 74, Is. 4, pp. 534-542.

3. Rakhmonov, Z. Kh. 2014, “The Estermann cubic problem with almost equal summands”, Mathematical Notes, vol. 95, Is. 3-4, pp. 407–417.

4. Rakhmonov, F. Z., & Rakhimov, A. O. 2015, “On an additive problem with almost equal summands”, Issledovaniya po algebre, teorii chisel, funktsional’nomu analizu i smezhnym voprosam. Izdatel’stvo: Saratovskiy natsional’nyy issledovatel’skiy gosudarstvennyy universitet im. N.G. Chernyshevskogo, ISSN: 1810-4134, no 8, pp. 87–89, (in Russian).

5. Rakhmonov, Z. Kh., & Rakhmonov, F. Z. 2024, “Asymptotic formula in the Waring’s problem with almost proportional summands”, Chebyshevskii Sbornik, vol. 25, Is. 2(93), pp. 139–168, (in Russian).

6. Rakhmonov, Z. Kh., & Rakhmonov, F. Z. 2024, “Asymptotic formula in the Waring’s problem with almost proportional summands”, Doklady Natsional’noi akademii nauk Tadzhikistana, vol. 67, no 3-4, pp. 125-136, (in Russian).

7. Rakhmonov, Z. Kh., & Rakhmonov, F. Z. 2023, “Waring’s problem with almost proportional summands”, Doklady Natsional’noi akademii nauk Tadzhikistana, vol. 66, no 9-10, pp. 481-488, (in Russian).

8. Rakhmonov, Z. Kh., & Rakhmonov, F. Z. 2023, “Behavior of short exponential sums of G.Weyl in major arcs”, Doklady Natsional’noi akademii nauk Tadzhikistana, vol. 66, no 11-12, pp. 625-633, (in Russian).

9. Rakhmonov, Z. Kh. 2023, “Generalization of Waring’s problem for nine almost proportional cubes”, Chebyshevskii Sbornik, vol. 24, Is. 3, pp. 71–94, (in Russian).

10. Rakhmonov, Z. Kh., & Azamov, A.Z., Nazrubloev, N. N. 2018, “Of short Weyl’s exponential sum in minor arcs”, Doklady Akademii nauk Respubliki Tajikistan, vol. 61, no 7-8, pp. 609-614, (in Russian).

11. Rakhmonov, F. Z. 2011, “Estimation of trigonometric sums with prime numbers”, Chebyshevskii Sbornik, vol. 12, Is. 1, pp. 158–171, (in Russian).

12. Rahmonov, F. Z. 2011, “Estimate of quadratic trigonometric sums with prime numbers”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., no. 3, pp. 56–60.

13. Rakhmonov, Z. Kh., & Rakhmonov, F. Z. 2017, “Short Cubic Exponential Sums over Primes”, Proceedings of the Steklov Institute of Mathematics, vol. 296, pp. 211-233.

14. Rakhmonov, Z. Kh. & Rakhmonov, F. Z. 2024, “Short cubic exponential sums with M¨obius function”, Chebyshevskii Sbornik, vol. 20, Is. 4, pp. 281–305, (in Russian).

15. Mardjhanashvili, K. K. 1939, “An estimate for an arithmetic sum”, Doklady Akad. Nauk SSSR, vol. 22, no 7, pp. 391–393.

16. Karatsuba, A. A. 1993, “Basic analytic number theory”, Springer-Verlag, Berlin, xiv+222 pp.

17. Sobirov, A. A. 2021, “Short linear exponential sums with primes in a neighborhood of the center of major arcs”, Doklady Natsional’noi akademii nauk Tadzhikistana, vol. 64, no 11-12, pp. 611-620, (in Russian).

18. Arkhipov, G. I. & Chubarikov, V. N. & Karatsuba, A. A. 2004, “Trigonometric sums in number theory and analysis”, Berlin–New-York: Walter de Gruyter, 554 p.

19. Huxley, М. N. 1972, “On the differences between consecutive primes”, Inventiones mathematicae, vol. 15, pp. 164 – 170.

20. Whittaker, G. E.,& Watson, T. N. 1915, “A Course of Modern Analysis. Part 1. The processes of analysis. Part 2. The transcendental functions”, Cambridge, Cambridge University Press, p. 620.


Review

For citations:


Rakhmonov F.Z. Asymptotic formula in generalization of ternary Esterman problem with almost proportional summands. Chebyshevskii Sbornik. 2024;25(4):120-137. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-4-120-137

Views: 54


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)