Preview

Chebyshevskii Sbornik

Advanced search

Infinite algebraic independence of some almost polyadic numbers

https://doi.org/10.22405/2226-8383-2024-25-3-365-372

Abstract

The paper considers 𝐹-series 𝑓𝑖,𝑗(𝑧) = Σ︀∞
𝑛=0 (𝛼𝑖)𝑛(𝛽𝑗𝑧)𝑛, where 𝛼𝑖, 𝛽𝑗 are some rational
numbers. These series satisfy a system of first-order linear differential equations with coefficients from C(𝑧). Using previous results obtained using the approach proposed in one of the works of V.Kh. Salikhov, the algebraic independence of these series over C(𝑧) is established. Application of the general theorem on the arithmetic properties of 𝐹-series from the works of V.G. Chirsky, allows us to assert the infinite algebraic independence of the values of these series. This means that for any polynomial 𝑃 (𝑥1,1, . . . , 𝑥𝑚,𝑛) with integer coefficients other than the identical zero and any integer 𝜉 ̸= 0, there is an infinite set of prime numbers 𝑝 such that in the field Q𝑝 the inequality

Here the symbols 𝑓(𝑝) 𝑖𝑗 (𝜉) denote the sums of the
series Σ︀∞ 𝑛=0 (𝛼𝑖)𝑛 (𝛽𝑗𝜉)𝑛 in the field Q𝑝.

About the Author

Vladimir Yur’evich Matveev
Russian Presidential Academy of National Economy and Public Administration
Russian Federation

candidate of physical and mathematical sciences



References

1. Matveev, V. Yu. 2019, “Properties of elements of direct products of fields”, Chebyshevskii sbornik, vol. 20, № . 2, pp. 383—390.

2. Salikhov, V. Kh. 1973, “The algebraic independence of the values of 𝐸-functions satisfying linear first-order differential equations”, Matem. zametki, Vol. 13., № 1, pp. 29 – 40.

3. Chirskii, V. G. 2019, “Product formula, global relations and polyadic integers”, Russian

4. Journal of Mathematical Physics, izdatel’stvo Maik Nauka/Interperiodica Publishing (Russian Federation), Vol 26, № 3, pp. 286 – 305.

5. Yudenkova, E. Y. 2021, “Infinite linear and algebraic independence of values of 𝐹-series at polyadic Liouvillea points”, Chebyshevskii sbornik, Vol. 22, Iss. 2, pp. 334 – 346.

6. Chirskii, V. G. 2023, “Transcendence of certain 2-adic numbers”, Chebyshevskii sbornik, Vol. 24, Iss. 5, pp.. 194 – 200.

7. Chirskii, V. G. 2023, “Transcendence of 𝑝-adic values of generalized hypergeometric series with transcendental polyadic parameters”, Doklady Rossiyskoy akademii nauk. Matematika, informatika, protsessy upravleniya, izdatel’stvo Rossiyskaya akademiya nauk (Moskva), Vol. 510, pp. 29 – 32.

8. Chirskii, V. G. 2022, “On Polyadic Liouville Numbers”, Doklady Mathematics, izdatel’stvo Maik Nauka/Interperiodica Publishing (Russian Federation), Vol 106, № S2, pp. 161 – 164.

9. Chirskii, V. G. 2022, “Arithmetic Properties of Values at Polyadic Liouville Points of Euler-

10. Type Series with Polyadic Liouville Parameter”, Doklady Mathematics, издательство Maik

11. Nauka/Interperiodica Publishing (Russian Federation), Vol. 106, № S2, pp. 150 – 153.

12. Chirskii, V. G. 2022, “Infinite Linear Independence with Constraints on a Subset of Prime

13. Numbers for Values of Euler-Type Series with Polyadic Liouville Parameter”, Doklady Mathematics, izdatel’stvo Maik Nauka/Interperiodica Publishing (Russian Federation), Vol. 106, № S2, pp. 154 – 160.

14. Chirskii, V. G. 2022, “Arithmetic Properties of Polyadic Integers”, Doklady Mathematics,

15. izdatel’stvo Maik Nauka/Interperiodica Publishing (Russian Federation), tom 106, № S2,

16. pp. 142 – 146.

17. Chirskii, V. G. 2022, “Arithmetic Properties of the Values of Generalized Hypergeometric Series with Polyadic Transcendental Parameters”, Doklady Mathematics, izdatel’stvo Maik Nauka/Interperiodica Publishing (Russian Federation), Vol. 106, № 2, pp. 386 – 397.

18. Chirskii, V. G. 2022, “Arithmetic properties of the values of generalized hypergeometric series with polyadic transcendental parameters”, Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, izdatel’stvo Rossiyskaya akademiya nauk (Moskva), Vol. 506, pp. 95 – 107.

19. Chirskii, V. G. 2022, “New problems in the theory of transcendental polyadic numbers”, Doklady Mathematics, izdatel’stvo Maik Nauka/Interperiodica Publishing (Russian Federation), Vol. 106, № 1, pp. 265 – 267.

20. Chirskii, V. G. 2022, “Polyadic Liouville Numbers”, Chebyshevskii Sbornik, Vol. 106, № S2, pp. 137 – 141.

21. Chirskii, V. G. 2020, “Arithmetic Properties of Euler-Type Series with a Liouvillean Polyadic Parameter”, Doklady Akademii nauk, izdatel’stvo FGBU “Izdatel’stvo Nauka” (Moskva), Vol. 102, № 2, pp.. 68 – 70

22. Chirskii, V. G. 2021, “Arithmetic Properties of an Euler-Type Series with Polyadic Liouville Parameter”, Russian Journal of Mathematical Physics, издательство Maik Nauka/Interperiodica Publishing (Russian Federation), Vol. 28, № 3, pp. 293 – 302. DOI

23. Chirskii, V. G. 2020, “Arithmetic properties of Generalized Hypergeometric Series”, Russian Journal of Mathematical Physics, издательство Maik Nauka/Interperiodica Publishing (Russian Federation), Vol. 27, № 2, pp. 175 – 184.


Review

For citations:


Matveev V.Yu. Infinite algebraic independence of some almost polyadic numbers. Chebyshevskii Sbornik. 2024;25(3):365-372. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-3-365-372

Views: 55


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)