On the simultaneous representation of numbers by the sum of five prime numbers
https://doi.org/10.22405/2226-8383-2024-25-3-11-36
Abstract
Let $X-$be a sufficiently large real number, $b_{1},b_{2},b_{3}-$be integers with the condition $1\le {{b}_{1}},{{b}_{2}},{{b}_{3}}\le X,\,\,\, a_{ij}, (i=1,2,3;\,\,\, j=\overline{1.5})$ positive integers, $p_{1},...,p_{5}-$prime numbers. Let us set $B=max\{3|a_{ij}|\} ,\,\,(i=1,2,3;\,\,j=\overline{1.5}), \vec{b} = (b_{1},b_{2},b_{3}),\,\, K=36\sqrt{3}B^{5}|\vec{b}|, E_{3,5}(X)=\\=card\{b_{i} |1\le {{b}_{i}}\le X,\,\,b_{i}\neq a_{i1} p_{1}+\cdots+a_{i5} p_{5},\,\,i=1,2,3\}$. In the paper it is proved that the system $b_{i}=a_{i1}p_{1}+\cdots+a_{i5}p_{5},\,\,(i=1,2,3)$ is solvable in prime numbers $p_{1},\cdots,p_{5}$, for all triples $\vec{b}=(b_{1}, b_{2},b_{3}),\,\, 1\le {{b}_{1}},{{b}_{2}},{{b}_{3}}\le X$, with the exception of no more than $E_{3,5}(X)$ triples of them, and a lower bound is obtained for the $R(\vec{b})-$number of solutions of this system, that is, the inequality $R(\vec{b})>> K^{2-\varepsilon}( \log K)^{-5}$ is proved to be true, for all $(b_{1},b_{2},b_{3})$ with the exception of no more than $X^{3-\varepsilon}$ triples of them.
About the Authors
Ismail AllakovUzbekistan
doctor of physical and mathematical sciences, professor
Bekmurod Kholboy ugli Erdonov
Uzbekistan
basic doctoral student
References
1. Allakov, I., 2021, “Estimation of trigonometric sums and their applications to the solution of
2. some additive problems in number theory”, Termez: Surxon nashr. 160 p.
3. Wu Fang. 1957, “On pairs of linear equations in three prime variables and an application to
4. Goldbach’s problem”, J.reine angew. Math., vol.399. pp. 102–121.
5. Liu, M. C. & Tsang, K. M. 1989, “On the solutions of the systems of linear equations with
6. prime variables”, Acta Math.Sinica., vol.7. pp. 109–136.
7. Allakov, I. 2006, “On conditions for the solvability of a system of linear Diophantine equations in prime numbers”, Izv. universities Mat., vol.9. pp. 10–16.
8. Allakov, I., Israilov, M.I. 1992, “On the solvability of a system of linear equations in prime
9. numbers”, Dokl. AN RUz.– Tashkent, vol.10. pp. 12–15.
10. Hua Lo-Ken. 1947, “Additive prime number theory”, Tr. Math. Institute named after V.A.
11. Steklova, vol.22. pp. 3–179.
12. Abrayev, B.Kh., Allakov, I. 2020, “On solvability conditions of a pair of linear equations with
13. four unknowns in prime numbers”, Uzbek Mathematical journal. Tashkent, vol.3. pp. 16–24.
14. Allakov, I., Abrayev, B.Kh. 2023, “On the exceptional set of one system of linear equations with prime numbers”, Chebyshevskii Sbornik, vol.24 № 2. pp. 15–37.
15. Erdonov, B.X. 2024, “On the conditions of solvability of a system of linear equations consisting of three equations with five unknowns in prime numbers”, Scientific bulletin of NamSU № 4. pp. 116–121.
16. Karatsuba, A.A. 1983, “Fundamentals of analytic number theory”, Main editorial office of
17. physical and mathematical literature publishing house, Nauka, M., 543 p.
18. Davenport, H. 2000, “Multiplicative number theory. Third edition”, Springer, 177 p.
19. Kolmogorov, A.N., Fomin, S.V. 1976, “Elements of the theory of functions and functional
20. analysis”, Nauka, M., 240 p.
21. Liu, M. C., Tsang, K. M. 1989, “Small prime solutions of linear equations”, Proc. Intern. Number. Th. Conf. 1987. Laval University. Cand. Math. Soc. Berlin-New York., pp. 595–624.
22. Hua, L. K. 1965, “Additive Theory of Prime Numbers”, Transl. of Math. Monographs 13, Amer. Math. Soc., Providence, R.I., 190 p.
23. Hasse, H. 1964, “Vorlesungen ¨uber Zahlentheorie”, Grundlehren Math. Wiss. 59, Berlin-
24. Heidelberg-New York, 520 p.
25. Hardy, G. H. 1979, “An Introduction to the Theory of Numbers”, Wright E. M. , 5th ed., Oxford, 621 p.
Review
For citations:
Allakov I., Erdonov B.Kh. On the simultaneous representation of numbers by the sum of five prime numbers. Chebyshevskii Sbornik. 2024;25(3):11-36. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-3-11-36