Preview

Chebyshevskii Sbornik

Advanced search

Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations

https://doi.org/10.22405/2226-8383-2024-25-2-296-317

Abstract

A one-dimensional initial-boundary value problem for a hollow orthotropic multicomponent cylinder under the action of volumetric elastic diffusion perturbations is considered. The mathematical model includes a system of equations of elastic diffusion in a cylindrical coordinate system, which takes into account relaxation diffusion effects, implying finite propagation
velocities of diffusion flows.
The problem is solved by the method of equivalent boundary conditions. To do this, we consider some auxiliary problem, the solution of which can be obtained by expanding into series in terms of eigenfunctions of the elastic diffusion operator. Next, we construct relations that connect the right-hand sides of the boundary conditions of both problems, which are a system of Volterra integral equations of the first kind. A calculation example for a three-component hollow cylinder is considered.

About the Authors

Nikolay Andreevich Zverev
Moscow Aviation Institute (National Research Institute)
Russian Federation

candidate of physical and mathematical sciences



Andrey Vladimirovich Zemskov
Moscow Aviation Institute (National Research Institute); Lomonosov Moscow State University
Russian Federation

doctor of physical and mathematical sciences



Vladimir Mikhailovich Yaganov
Moscow Aviation Institute (National Research Institute)
Russian Federation

candidate of physical and mathematical sciences



References

1. Abbas, A. I. 2015. “Eigenvalue approach on fractional order theory of thermoelastic diffusion

2. problem for an infinite elastic medium with a spherical cavity”, Applied Mathematical

3. Modelling., Vol. 39, No. 20, pp. 6196-6206.

4. Abbas, A. Ibrahim & Elmaboud, Y. Abd. 2017. “Analytical solutions of thermoelastic interactions in a hollow cylinder with one relaxation time”, Mathematics and Mechanics of Solids., Vol. 2, No. 2, pp. 210-223.

5. Abo-Dahab, S. M. 2019. “Generalized Thermoelasticity with Diffusion and Voids under

6. Rotation, Gravity and Electromagnetic Field in the Context of Four Theories”, Appl. Math.

7. Inf. Sci., Vol. 13, No. 2, pp. 317-337.

8. Aouadi, M. 2006. “A generalized thermoelastic diffusion problem for an infinitely long solid

9. cylinder”, Intern. J. Mathem. and Mathem. Sci., Vol. 2006, pp. 1-15.

10. Aouadi, M. 2007. “A problem for an infinite elastic body with a spherical cavity in the theory

11. of generalized thermoelastic diffusion”, International Journal of Solids and Structures., Vol. 44,

12. pp. 5711-5722.

13. Bhattacharya, D. & Pal, P. & Kanoria, M. 2019. “Finite Element Method to Study Elasto-

14. Thermodiffusive Response inside a Hollow Cylinder with Three-Phase-Lag Effect”, International Journal of Computer Sciences and Engineering., Vol. 7, Is. 1, pp. 148-156.

15. Choudhary, S. 2010. “Mechanical loads on a generalized thermoelastic medium with diffusion”, Meccanica., Vol. 45, pp. 401-413.

16. Davydov, S. A. & Zemskov, A.V. 2022. “Thermoelastic Diffusion Phase-Lag Model for a Layer with Internal Heat and Mass Sources”, International Journal of Heat and Mass Transfer., Vol. 183, part. C, 122213

17. Deswal, S. & Kalkal, K. 2011. “A two-dimensional generalized electro-magneto-thermoviscoelastic problem for a half-space with diffusion”, International Journal of Thermal Sciences., Vol. 50, No. 5, pp. 749-759.

18. Deswal, S. & Kalkal, K. K. & Sheoran, S. S. 2016. “Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction”, Physica B: Condensed Matter., Vol. 496, pp. 57-68.

19. Elhagary, M. A. 2011. “Generalized thermoelastic diffusion problem for an infinitely long hollow cylinder for short times”, Acta Mech., Vol. 218, pp. 205-215.

20. Elhagary, M.A. 2012. “Generalized thermoelastic diffusion problem for an infinite Medium with a Spherical Cavity”, Int. J. Thermophys., Vol. 33, pp. 172-183.

21. Kaur, I. & Lata, P. 2019. “Rayleigh wave propagation in transversely isotropic magnetothermoelastic medium with three-phase-lag heat transfer and diffusion”, International Journal of Mechanical and Materials Engineering., Vol. 14, No. 12. https://doi.org/10.1186/s40712-019-0108-3

22. Kumar, R. & Devi, S. 2019. “Deformation of modified couple stress thermoelastic diffusion in a thick circular plate due to heat sources”, CMST., Vol. 25, No. 4, pp. 167-176.

23. Kumar, R. & Devi, S. 2019. “Effects of Viscosity on a Thick Circular Plate in Thermoelastic

24. Diffusion Medium”, Journal of Solid Mechanics., Vol. 11, No. 3, pp. 581-592.

25. Lata, P. 2019. “Time harmonic interactions in fractional thermoelastic diffusive thick circular

26. plate”, Coupled Systems Mechanics., Vol. 8, No. 1, pp. 39-53.

27. Salama, M. M. & Kozae, A. M. & Elsafty, M.A. & Abelaziz, S. S. 2015. “A half-space problem in the theory of fractional order thermoelasticity with diffusion”, International Journal of Scientific and Engineering Research., Vol. 6, Is. 1, pp. 358-371.

28. Sharma, N. & Kumar, R. & Ram, P. 2008. “Plane strain deformation in generalized

29. thermoelastic diffusion”, Int. J. Thermophys., Vol. 29, pp. 1503–1522.

30. Sharma, J. N. & Thakur, N. & Singh, S. 2007. “Propagation characteristics of elastothermodiffusive surface waves in semiconductor material half-space”, Therm Stresses., Vol. 30, pp. 357-380.

31. Tripathi, J. J. & Kedar, G. D. & Deshmukh, K. C. 2015. “wo-dimensional generalized thermoelastic diffusion in a half-space under axisymmetric distributions”, Acta Mech., Vol. 226, pp. 3263–3274.

32. Xia, R. H. & Tian, X. G. & Shen, Y.P. 2009. “The influence of diffusion on generalized

33. thermoelastic problems of infinite body with a cylindrical cavity”, International Journal of

34. Engineering Science., Vol. 47, pp. 669-679.

35. Minov, A. V. 2008. “Issledovanie napryazhenno-deformirovannogo sostoyaniya pologo tsilindra, podverzhennogo termodiffuzionnomu vozdejstviyu ugleroda v osesimmetrichnom teplovom pole, peremennom po dline [Investigation of the stress-strain state of a hollow cylinder subject to thermal diffusion action of carbon in an axisymmetric thermal field, variable along its length].”, Izvestiya vuzov. Mashinostroenie [BMSTU Journal of mechanical engineering]., No. 10, pp. 21-26. [In Russian]

36. Pavlina, V. S. 1965. “O vliyanii diffuzii na temperaturnye napryazheniya v okrestnosti cilindricheskoj polosti [On the effect of diffusion on thermal stresses in the vicinity of a cylindrical cavity]”, Fiziko-himicheskaya mekhanika materialov., No. 4, pp. 390-394. [In Russian]

37. Hwang, C. C. & Huang, I.B. 2012. “Diffusion-induced stresses in hollow cylinders for transient state”, IOSR Journal of Engineering (IOSRJEN)., Vol. 2, Is. 8, pp. 166-182.

38. Lee, S. & Wang, W. L. & Chen, J. R. 2000. “Diffusion-induced stresses in a hollow cylinder: Constant surface stresses”, Materials Chemistry and Physics., Vol. 64, No. 2, pp. 123-130.

39. Soares, J. S. 2009. “Diffusion of a fluid through a spherical elastic solid undergoing large

40. deformations”, International Journal of Engineering Science., Vol. 47, pp. 50-63.

41. Tartibi, M. & Guccione, J. M. & Steigmann, D. J. 2019. “Diffusion and swelling in a bio-elastic cylinder”, Mechanics Research Communications., Vol. 97, pp. 123-128.

42. Yang, F. 2013. “ Effect of diffusion-induced bending on diffusion-induced stress near the end faces of an elastic hollow cylinder”, Mechanics Research Communications., Vol. 51, pp. 72-77.

43. Kartashov, E. M. & Kudinov, V. A. 2018. “Analiticheskie metody teorii teploprovodnosti i ee

44. prilozhenij [Analytical methods of the theory of heat conduction and its applications].”, Moscow, URSS., 1080 p. [In Russian]

45. Zverev, N. A. & Zemskov, A. V. 2022. “Modeling Unsteady Elastic Diffusion Processes in

46. a Hollow Cylinder Taking into Account the Relaxation of Diffusion Fluxes”, Mathematical

47. Modeling., Vol. 35, No. 1, pp. 25-37.

48. Zverev, N. A. & Zemskov, A. V. & Tarlakovsky, D. V. 2021. “Nestacionarnaya mekhanodiffuziya sploshnogo ortotropnogo cilindra, nahodyashchegosya pod dejstviem ravnomernogo davleniya, s uchetom relaksacii diffuzionnyh potokov [Unsteady elastic diffusion of an orthotropic cylinder under uniform pressure considering relaxation of diffusion fluxes]”, Mekhanika kompozitsionnykh materialov i konstruktsii., Vol. 27, No. 4, pp. 570-586. [In Russian]

49. Zemskov, A. V. & Tarlakovskii, D. V. 2015. “Method of the equivalent boundary conditions in the unsteady problem for elastic diffusion layer”, Materials Physics and Mechanics., Vol. 23,

50. No. 1, pp. 36-41.

51. Zverev, N. A. & Zemskov, A. V. & Tarlakovsky, D. V. 2022. “Modelling of one-dimensional elastic diffusion processes in an orthotropic solid cylinder under unsteady volumetric perturbations”, Bulletin of the Samara State Technical University. Series: Physical and Mathematical Sciences., Vol. 26, No. 1, pp. 62-78.

52. Zemskov, A. V. & Tarlakovskii, D.V. 2021. “Modelirovanie mekhanodiffuzionnyh processov v mnogokomponentnyh telah s ploskimi granicami [Modeling of mechanodiffusion processes in multicomponent bodies with flat boundaries]”, FIZMATLIT., 288 p. [In Russian]

53. Ditkin, V. A. & Prudnikov, A.P. 1961. “Spravochnik po operatsionnomu ischisleniyu [Handbook on Operational Calculus]”, Moscow, Vysshaya shkola., 524 p. [In Russian]

54. Babichev, A. P., Babushkina, N. A., Bratkovsky, A. M. and others; under the general editorship of Grigoriev, I. S., Meilikhov, I. Z. 1991. “Fizicheskie velichiny: Spravochnik [Physical quantities: Handbook].”, Moscow, Energoatomizdat., 1232 p. [In Russian]


Review

For citations:


Zverev N.A., Zemskov A.V., Yaganov V.M. Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations. Chebyshevskii Sbornik. 2024;25(2):296-317. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-2-296-317

Views: 273


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)