Sufficient conditions for the existence of the solution of an infinite-difference equation with variable coefficients
https://doi.org/10.22405/2226-8383-2024-25-2-243-250
Abstract
The paper discusses a difference equation of the form
Σ︀𝑟𝑙=0 𝑎𝑘,𝑙𝑍𝑘+𝑙 = 𝑦𝑘 (𝑘 ∈ Z), where 𝑟 ∈ N, 𝑦 = {𝑦𝑘}𝑘∈Z is a given numerical sequence from the space 𝑙𝑝 (1 ⩽ 𝑝 < ∞), provided that the matrix 𝐴 = (𝑎𝑘,𝑙), 𝑎𝑘,𝑙 ∈ R, satisfies some condition close to the presence of a dominant diagonal. With the help of the fixed point theorem, sufficient conditions are written for the
coefficients 𝑎𝑘,𝑙, at which the equation has a unique solution 𝑍 = {𝑍𝑘}𝑘∈Z, belonging to the space 𝑙_𝑝. For the norm of this solution, a numerical estimate is given from above.
About the Authors
Sergei Ernestovich NohrinRussian Federation
candidate of physical and mathematical sciences
Valerii Trifonovich Shevaldin
Russian Federation
doctor of physical and mathematical sciences
References
1. Subbotin, Yu. N. 1965. “On the connection between finite differences and corresponding
2. derivatives”, Proc. Steklov Inst. Math., vol. 78, pp. 24–42 (in Russian).
3. Subbotin, Yu. N. 1977. “Extremal problems of functional interpolation and mean interpolation
4. splines”, Proc. Steklov Inst. Math., vol. 138, pp. 127–185.
5. Shevaldin, V. T. 1985. “Some problems of extremal interpolation in the mean for linear
6. differential operators”, Proc. Steklov Inst. Math., vol. 164, pp. 233–273.
7. Novikov, S. I., Shevaldin, V. T. 2020. “On the connection between the second divided difference and the second derivative”, Tr. In-ta Matematiki I Mekhaniki UrO RAN, vol. 26, no. 2, pp. 216– 224. doi: 10.21538/0134-4889-2020-26-2-216-224 (in Russian).
8. Subbotin, Yu. N., Shevaldin, V. T. 2022. “Extremal functional 𝐿𝑝-interpolation on an arbitrary
9. mesh on the real axis”, Sbornik: Mathematics, vol. 213, no. 4, pp. 556–577. doi: 10.1070/SM9628.
10. Shevaldin, V. T. 2022. “Extremal interpolation with the least value of the norm of the second
11. derivative in 𝐿𝑝(𝑅)”, Izvestiya: Mathematics, vol. 86, no. 1, pp. 203–219. doi: 10.1070/IM9125.
12. Subbotin, Yu. N., Novikov, S. I., Shevaldin, V. T. 2018. “Extremal function interpolation and
13. splines”, Tr. In-ta Matematiki I Mekhaniki UrO RAN, vol. 24, no. 3, pp. 200–225. doi:
14. 21538/0134-4889-2018-24-3-200-225 (in Russian).
15. Krein, M. G. 1958. “Integral equations on the half-line with a kernel depending on the difference of the arguments”, Uspekhi Mat. Nauk, vol. 138, no. 5 (83), pp. 3–120 (in Russian).
16. Volkov, Yu. S., Novikov, S. I. 2022. “Estimates of solutions to uniform systems of linear equations and the problem of interpolation by cubic splines on the real line”, Siberian Math. J., vol. 63, no. 4, pp. 677—90. doi: https://doi.org/10.1134/S0037446622040085.
17. Volkov, Yu. S., Novikov, S. I. 2022. “Estimations for solutions of bi-infinite systems of linear
18. equations”, Eur. J. Math., vol. 8, no. 2. P. 722–731. doi: https://doi.org/10/1007/s40879-021-
19. -y.
20. Kantorovich, L. V., Krylov, V. I. 1962. “Approximate methods of higher analysis”. M.: Fizmatgiz. Publ., 695 p.
21. Gel’fond, A. O. 1967. “Calculus of finite differences”, M.: Nauka Publ., 376 p.
Review
For citations:
Nohrin S.E., Shevaldin V.T. Sufficient conditions for the existence of the solution of an infinite-difference equation with variable coefficients. Chebyshevskii Sbornik. 2024;25(2):243-250. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-2-243-250