Preview

Chebyshevskii Sbornik

Advanced search

ON A PROBLEM OF FINDING NON-TRIVIAL ZEROS OF DIRICHLET L-FUNCTIONS IN NUMBER FIELDS

https://doi.org/10.22405/2226-8383-2015-16-2-144-154

Abstract

There is a numeric algorithm for finding non-trivial zeros of regular Dirichlet L-functions. This algorithm is based on a construction of Dirichlet polynomials which approximate these L-functions in any rectangle in the critical strip with exponential speed. This result does not hold for Dirichlet L-functions in number fields, because if it did, a power series with the same coefficients as the Dirichlet series defining the L-function would converge to a function which is holomorphic at 1, however, it is known that that such power series in case of a number field different from the field of rational numbers can’t be continued analytically past its convergence boundary. Consequently, we need to develop a new numerical algorithm for finding non-trivial zeros of Dirichlet L-functions in number fields. This problem is discussed in this paper. We show that there exists a sequence of Dirichlet polynomials which approximate a Dirichlet L-function in a number field faster than any power function in any rectangle inside the critical strip. We also provide an explicit construction of approximating Dirichlet polynomials, whose zeros coincide with those of a Dirichlet L-function in the specified rectangle, for an L-function, if it can be split into a product of classical L-functions. Additionally we discuss some questions related to the construction of such polynomials for arbitrary Dirichlet L-functions.

 

About the Authors

V. N. Kuznetsov
Саратовский государственный университет имени Н. Г. Чернышевского
Russian Federation


V. A. Matveev
Саратовский государственный университет имени Н. Г. Чернышевского
Russian Federation


References

1. Heilbronn, H. 1969, "Zeta-function and L-function" , Algebraicheskaja teorija chisel. Pod redakciei J. Kasselsa i A .Frelikha, "MIR" , Moscow, pp. 310–346.

2. Leng, S. 1966, "Algebraic numbers" , "MIR" , Moscow.

3. Weil, A. 1972, "Basics of number theory" , "MIR" , Moscow.

4. Turan, P. 1975, "On a certain new results in analytical number theory" , Problemy analiticheskoi teorii chisel, "MIR" , Moscow, pp. 118–142.

5. Korotkov, A. E. & Matveeva, O. A. 2011, "On a particular numeric algorithm for finding zeros of entire functions which are defined by Dirichlet series with periodic coefficients" , Nauchnye vedomosti Belgorodskogo gos. universiteta, issue 24, pp. 47–54.

6. Matveeva, O. A. 2013, "On zeros of Dirichlet polynomials which approximate Dirichlet L-functions in the critical string" , Chebyshevskii sbornik, vol. 14, issue 2, pp. 117–121.

7. Matveeva, O. A. 2013, "Approximation polynomials and behavior of Dirichlet Lfunctions in the critical strip" , Izvestiia Saratovskogo un-ta. Seriia «Matematika. Informatika. Mekhanika.», vol. 13, issue 4, part 2, pp. 80–84.

8. Kuznetsov, V. N. 1994, "An analog of Szego theorem for one class of Dirichlet series" , Mat. zametki, vol. 36, no. 6, pp. 805–812.

9. Matveeva, O. A. 2014, "Analytical properties of some classes of Dirichlet series and some problems of the theory of Dirichlet L-functions" , Dissertation, Ul’ianovsk.

10. Kuznetsov, V. N., Kuznetsova, T. A. & Krivobok, V. V. 2009, "On the impossibility of analytical continuation beyond the convergence boundary of power series corresponding to Dirichlet L-functions in number fields" , Issledovaniia po algebre, teorii chisel, funktsional’nomu analizu i smezhnym voprosam: mezhvuzovskii sbornik nauchnykh trudov, issue 4, pp. 31–36.

11. Kuznetsov, V. N., Krivobok, V. V. & Setsinskaia, E. V. 2005, "On the boundary properties of one class of power series" , Issledovaniia po algebre, teorii chisel, funktsional’nomu analizu i smezhnym voprosam: mezhvuzovskii sbornik nauchnykh trudov, issue 3, pp. 40–47.

12. Daugavet, I. K. 1973, "An introduction to the theory of function approximation" , LGU publishing, Leningrad.

13. Suetin, P. K. 1970, "Classical orthogonal polynomials" , "Nauka" , Moscow.

14. Prahar, K. 1967, "The distribution of prime numbers" , "MIR" , Moscow.

15. Kuznetsov, V. N., Setsinskaia, E. V. & Krivobok, V. V. 2004, "On a problem of splitting a Dirichlet L-function in number fields" , Chebyshevskii sbornik, vol. 5, issue 3 (II), pp. 51–63.

16.


Review

For citations:


Kuznetsov V.N., Matveev V.A. ON A PROBLEM OF FINDING NON-TRIVIAL ZEROS OF DIRICHLET L-FUNCTIONS IN NUMBER FIELDS. Chebyshevskii Sbornik. 2015;16(2):144-154. (In Russ.) https://doi.org/10.22405/2226-8383-2015-16-2-144-154

Views: 470


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)