ON A PROBLEM OF FINDING NON-TRIVIAL ZEROS OF DIRICHLET L-FUNCTIONS IN NUMBER FIELDS
https://doi.org/10.22405/2226-8383-2015-16-2-144-154
Abstract
There is a numeric algorithm for finding non-trivial zeros of regular Dirichlet L-functions. This algorithm is based on a construction of Dirichlet polynomials which approximate these L-functions in any rectangle in the critical strip with exponential speed. This result does not hold for Dirichlet L-functions in number fields, because if it did, a power series with the same coefficients as the Dirichlet series defining the L-function would converge to a function which is holomorphic at 1, however, it is known that that such power series in case of a number field different from the field of rational numbers can’t be continued analytically past its convergence boundary. Consequently, we need to develop a new numerical algorithm for finding non-trivial zeros of Dirichlet L-functions in number fields. This problem is discussed in this paper. We show that there exists a sequence of Dirichlet polynomials which approximate a Dirichlet L-function in a number field faster than any power function in any rectangle inside the critical strip. We also provide an explicit construction of approximating Dirichlet polynomials, whose zeros coincide with those of a Dirichlet L-function in the specified rectangle, for an L-function, if it can be split into a product of classical L-functions. Additionally we discuss some questions related to the construction of such polynomials for arbitrary Dirichlet L-functions.
About the Authors
V. N. KuznetsovRussian Federation
V. A. Matveev
Russian Federation
References
1. Heilbronn, H. 1969, "Zeta-function and L-function" , Algebraicheskaja teorija chisel. Pod redakciei J. Kasselsa i A .Frelikha, "MIR" , Moscow, pp. 310–346.
2. Leng, S. 1966, "Algebraic numbers" , "MIR" , Moscow.
3. Weil, A. 1972, "Basics of number theory" , "MIR" , Moscow.
4. Turan, P. 1975, "On a certain new results in analytical number theory" , Problemy analiticheskoi teorii chisel, "MIR" , Moscow, pp. 118–142.
5. Korotkov, A. E. & Matveeva, O. A. 2011, "On a particular numeric algorithm for finding zeros of entire functions which are defined by Dirichlet series with periodic coefficients" , Nauchnye vedomosti Belgorodskogo gos. universiteta, issue 24, pp. 47–54.
6. Matveeva, O. A. 2013, "On zeros of Dirichlet polynomials which approximate Dirichlet L-functions in the critical string" , Chebyshevskii sbornik, vol. 14, issue 2, pp. 117–121.
7. Matveeva, O. A. 2013, "Approximation polynomials and behavior of Dirichlet Lfunctions in the critical strip" , Izvestiia Saratovskogo un-ta. Seriia «Matematika. Informatika. Mekhanika.», vol. 13, issue 4, part 2, pp. 80–84.
8. Kuznetsov, V. N. 1994, "An analog of Szego theorem for one class of Dirichlet series" , Mat. zametki, vol. 36, no. 6, pp. 805–812.
9. Matveeva, O. A. 2014, "Analytical properties of some classes of Dirichlet series and some problems of the theory of Dirichlet L-functions" , Dissertation, Ul’ianovsk.
10. Kuznetsov, V. N., Kuznetsova, T. A. & Krivobok, V. V. 2009, "On the impossibility of analytical continuation beyond the convergence boundary of power series corresponding to Dirichlet L-functions in number fields" , Issledovaniia po algebre, teorii chisel, funktsional’nomu analizu i smezhnym voprosam: mezhvuzovskii sbornik nauchnykh trudov, issue 4, pp. 31–36.
11. Kuznetsov, V. N., Krivobok, V. V. & Setsinskaia, E. V. 2005, "On the boundary properties of one class of power series" , Issledovaniia po algebre, teorii chisel, funktsional’nomu analizu i smezhnym voprosam: mezhvuzovskii sbornik nauchnykh trudov, issue 3, pp. 40–47.
12. Daugavet, I. K. 1973, "An introduction to the theory of function approximation" , LGU publishing, Leningrad.
13. Suetin, P. K. 1970, "Classical orthogonal polynomials" , "Nauka" , Moscow.
14. Prahar, K. 1967, "The distribution of prime numbers" , "MIR" , Moscow.
15. Kuznetsov, V. N., Setsinskaia, E. V. & Krivobok, V. V. 2004, "On a problem of splitting a Dirichlet L-function in number fields" , Chebyshevskii sbornik, vol. 5, issue 3 (II), pp. 51–63.
16.
Review
For citations:
Kuznetsov V.N., Matveev V.A. ON A PROBLEM OF FINDING NON-TRIVIAL ZEROS OF DIRICHLET L-FUNCTIONS IN NUMBER FIELDS. Chebyshevskii Sbornik. 2015;16(2):144-154. (In Russ.) https://doi.org/10.22405/2226-8383-2015-16-2-144-154