generalisation of Legendre’s three-square theorem
https://doi.org/10.22405/2226-8383-2024-25-1-127-137
Abstract
In this paper a generalisation of Legendre’s three-square theorem to representations of two positive integers as sums of three squares for which the first square of each representation is the same is presented.
References
1. Anthony, Knapp, 2006. “Advanced Algebra”, Birkh¨auser Boston.
2. Jean-Pierre, Serre, 1973. “A Course in Arithmetic”, Springer Verlag, New York.
3. Chubarikov, V. N., 2020. “A generalized Binomial theorem and a summation formulae”, Chebishevskii Sbornik, Vol.21, Iss. 4, pp. 1—18.
4. Colliot-Th´el`ene, J.-L., Sansuc, J.-J., Sir Peter Swinnerton-Dyer, 1987. “Intersections of two quadrics and Chˆatelet surfaces”, J. f¨ur die reine und angew, Math. I, Bd., 373, pp. 37–107; II Bd., 374, pp. 72–168.
5. Colliot-Th´el`ene, Jean-Louis, and Coray, D., 1980. “Descente et principe de Hasse pour certaines vari´et´es rationnelles”, Journal f¨ur die reine und angewandte Mathematik, 320, pp. 150–191.
6. Per Salberger, 2023. “On the arithmetic of intersections of two quadrics containing a conic”, arXiv:2305.02109v1 [math.NT].
7. Vinogradov, I. M., 1983. “Foundations of Number Theory”, M.: Fiz.-Mat.lit.
8. Borevich, Z. I., Shafarevich, I. R., 1964. “Theory of Numbers”, M: Moscow.
Review
For citations:
Hafez A. generalisation of Legendre’s three-square theorem. Chebyshevskii Sbornik. 2024;25(1):127-137. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-1-127-137