Preview

Chebyshevskii Sbornik

Advanced search

generalisation of Legendre’s three-square theorem

https://doi.org/10.22405/2226-8383-2024-25-1-127-137

Abstract

In this paper a generalisation of Legendre’s three-square theorem to representations of two positive integers as sums of three squares for which the first square of each representation is the same is presented.

About the Author

Al-Assad Hafez
Lomonosov Moscow State University
Russian Federation


References

1. Anthony, Knapp, 2006. “Advanced Algebra”, Birkh¨auser Boston.

2. Jean-Pierre, Serre, 1973. “A Course in Arithmetic”, Springer Verlag, New York.

3. Chubarikov, V. N., 2020. “A generalized Binomial theorem and a summation formulae”, Chebishevskii Sbornik, Vol.21, Iss. 4, pp. 1—18.

4. Colliot-Th´el`ene, J.-L., Sansuc, J.-J., Sir Peter Swinnerton-Dyer, 1987. “Intersections of two quadrics and Chˆatelet surfaces”, J. f¨ur die reine und angew, Math. I, Bd., 373, pp. 37–107; II Bd., 374, pp. 72–168.

5. Colliot-Th´el`ene, Jean-Louis, and Coray, D., 1980. “Descente et principe de Hasse pour certaines vari´et´es rationnelles”, Journal f¨ur die reine und angewandte Mathematik, 320, pp. 150–191.

6. Per Salberger, 2023. “On the arithmetic of intersections of two quadrics containing a conic”, arXiv:2305.02109v1 [math.NT].

7. Vinogradov, I. M., 1983. “Foundations of Number Theory”, M.: Fiz.-Mat.lit.

8. Borevich, Z. I., Shafarevich, I. R., 1964. “Theory of Numbers”, M: Moscow.


Review

For citations:


Hafez A. generalisation of Legendre’s three-square theorem. Chebyshevskii Sbornik. 2024;25(1):127-137. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-1-127-137

Views: 680


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)