Preview

Chebyshevskii Sbornik

Advanced search

Uniform estimates for oscillatory integrals with smooth phase

https://doi.org/10.22405/2226-8383-2024-25-1-42-51

Abstract

We consider the problem on uniform estimates for an oscillatory integrals with the smooth phase functions having singularities 𝐷_∞. The estimate is sharp and analogy to estimates of the work of V.N.Karpushkin.

About the Authors

Isroil Akramovich Ikromov
V. I. Romanovsky Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan (Tashkent, Uzbekistan), Samarkand State University (Samarkand, Uzbekistan).
Uzbekistan


Akbar Rakhmanovich Safarov
V. I. Romanovsky Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan (Tashkent, Uzbekistan), Samarkand State University (Samarkand, Uzbekistan).
Uzbekistan


References

1. Arnold, V.I. & Gusein-Zade, S.M.& Varchenko, A.N. 1985. “Singularities of Differentiable Maps”, Birkhauser, Boston Basel, Stuttgart.

2. Varchenko, A.N. 1976. “Newton polyhedra and estimation of oscillating integrals”, Functional Analysis and Its Applications vol. 10, pp. 175—196.

3. Vladimirov, V.S. 1981. “Mathematic physics equation”, M.:Nauka. (Russian).

4. Van der Korput, 1934. “K.G. Zur Methode der stationaren phase”, Compositio Math. V.1., pp. 15–38.

5. Duistermaat, J., 1974. “Oscillatory integrals Lagrange immersions and unifoldings of singularities”, Comm. Pure.Appl.Math., Vol. 27, № 2, pp. 207–281.

6. Ikromov, I.A. & Muller, D. 2011. “On adapted coordinate systems”, Trans. Amer. Math. Soc., vol.363, no. 6, pp. 2821-2848.

7. Karpushkin, V.N. 1983, “Uniform estimates for oscillatory integrals with parabolic or hyperbolic phase”, Proceedings of the I.G.Petrovsky Seminar. Vol.9. pp. 3-39.(Russian)

8. Sogge, C.D. 1993. “Fourier integrals in Classical Analysis”, Cambridge, Cambridge university press, P. 105.

9. Carbery, A., Christ, M., and Wright, J., 1999. “ Multidimensional Van der Korput lemma and sublevel set estimates”, Journal of AMS, V.12. pp. 981–1015.

10. Ruzhansky, M., Safarov, A. R., Khasanov, G. A., 2022. “Uniform estimates for oscillatory integrals with homogeneous polynomial phases of degree 4”, Analysis and Mathematical Physics, 12(130).

11. Safarov, A., 2018. “Invariant estimates for double oscillatory integrals”, Mathematical Notes, 104:2, pp. 293—302.

12. Safarov, A., 2019. On the 𝐿𝑝-bound for trigonometric integrals. Analysis mathematica, 45, pp. 153–176.

13. Safarov, A., 2016. “On invariant estimates for oscillatory integrals with polynomial phase”, J. Sib. Fed. Univ. Math. Phys. 9 (2016), pp. 102–107.

14. Safarov, A., 2019. “On a problem of restriction of Fourier transform on a hypersurface”, Russian Mathematics, 63 (4), pp. 57–63.

15. Safarov, A. R., 2022. “Estimates for Mittag-–Leffler Functions with Smooth Phase Depending on Two Variables, J. Sib. Fed. Univ. Math. Phys., 15(4), pp. 459-–466.


Review

For citations:


Ikromov I.A., Safarov A.R. Uniform estimates for oscillatory integrals with smooth phase. Chebyshevskii Sbornik. 2024;25(1):42-51. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-1-42-51

Views: 409


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)