Uniform estimates for oscillatory integrals with smooth phase
https://doi.org/10.22405/2226-8383-2024-25-1-42-51
Abstract
We consider the problem on uniform estimates for an oscillatory integrals with the smooth phase functions having singularities 𝐷_∞. The estimate is sharp and analogy to estimates of the work of V.N.Karpushkin.
About the Authors
Isroil Akramovich IkromovUzbekistan
Akbar Rakhmanovich Safarov
Uzbekistan
References
1. Arnold, V.I. & Gusein-Zade, S.M.& Varchenko, A.N. 1985. “Singularities of Differentiable Maps”, Birkhauser, Boston Basel, Stuttgart.
2. Varchenko, A.N. 1976. “Newton polyhedra and estimation of oscillating integrals”, Functional Analysis and Its Applications vol. 10, pp. 175—196.
3. Vladimirov, V.S. 1981. “Mathematic physics equation”, M.:Nauka. (Russian).
4. Van der Korput, 1934. “K.G. Zur Methode der stationaren phase”, Compositio Math. V.1., pp. 15–38.
5. Duistermaat, J., 1974. “Oscillatory integrals Lagrange immersions and unifoldings of singularities”, Comm. Pure.Appl.Math., Vol. 27, № 2, pp. 207–281.
6. Ikromov, I.A. & Muller, D. 2011. “On adapted coordinate systems”, Trans. Amer. Math. Soc., vol.363, no. 6, pp. 2821-2848.
7. Karpushkin, V.N. 1983, “Uniform estimates for oscillatory integrals with parabolic or hyperbolic phase”, Proceedings of the I.G.Petrovsky Seminar. Vol.9. pp. 3-39.(Russian)
8. Sogge, C.D. 1993. “Fourier integrals in Classical Analysis”, Cambridge, Cambridge university press, P. 105.
9. Carbery, A., Christ, M., and Wright, J., 1999. “ Multidimensional Van der Korput lemma and sublevel set estimates”, Journal of AMS, V.12. pp. 981–1015.
10. Ruzhansky, M., Safarov, A. R., Khasanov, G. A., 2022. “Uniform estimates for oscillatory integrals with homogeneous polynomial phases of degree 4”, Analysis and Mathematical Physics, 12(130).
11. Safarov, A., 2018. “Invariant estimates for double oscillatory integrals”, Mathematical Notes, 104:2, pp. 293—302.
12. Safarov, A., 2019. On the 𝐿𝑝-bound for trigonometric integrals. Analysis mathematica, 45, pp. 153–176.
13. Safarov, A., 2016. “On invariant estimates for oscillatory integrals with polynomial phase”, J. Sib. Fed. Univ. Math. Phys. 9 (2016), pp. 102–107.
14. Safarov, A., 2019. “On a problem of restriction of Fourier transform on a hypersurface”, Russian Mathematics, 63 (4), pp. 57–63.
15. Safarov, A. R., 2022. “Estimates for Mittag-–Leffler Functions with Smooth Phase Depending on Two Variables, J. Sib. Fed. Univ. Math. Phys., 15(4), pp. 459-–466.
Review
For citations:
Ikromov I.A., Safarov A.R. Uniform estimates for oscillatory integrals with smooth phase. Chebyshevskii Sbornik. 2024;25(1):42-51. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-1-42-51