Preview

Chebyshevskii Sbornik

Advanced search

Diffraction of sound waves on an inhomogeneous thick-walled elastic cylindrical shell of finite length

https://doi.org/10.22405/2226-8383-2023-24-5-274-288

Abstract

The article considers the diffraction of sound waves by an inhomogeneous isotropic cylindrical shell of finite length of arbitrary thickness. It is assumed that there is a vacuum in the cavity of the cylindrical shell. The density and elastic modulus of the shell material are described by continuous functions of the radial coordinate. The primary field of disturbances is a plane harmonic sound wave falling obliquely on the body.
For the scattered field, a representation in the form of the Helmholtz-Kirchhoff integral is used. It is shown that the use of quadrature formulas for parallelepipedal Korobov grids makes it possible to reduce the number of calculations with approximate calculation of integrals. This method is compared with the calculation of integrals by the method of sequential integration using the quadrature formula of trapezoids. The calculation time of the field potential scattered
by a finite cylindrical shell is compared by two methods of calculating integrals.
A significant effect of the inhomogeneity of the shell material on the sound-reflecting properties of elastic cylindrical bodies has been revealed.

About the Authors

Nikolai Nikolaevich Dobrovol’skii
Tula State Lev Tolstoy Pedagogical University
Russian Federation

candidate of physical and mathematical sciences



Dmitrii Yurevich Efimov
Tula State University
Russian Federation

postgraduate student



Lev Alexeevich Tolokonnikov
Tula State University
Russian Federation

doctor of physical and mathematical sciences, professor



References

1. Williams, W. E. & Lighthill, M. J. 1956., “Diffraction by a cylinder of finite length”, Math. Proceed. Camb. Phil. Soc., vol. 52. no. 2. P. 322-335.

2. Lyamshev, L. M. 1957, “Sound diffraction on a thin bounded elastic cylindrical shell”, Dokl. Akad. Nauk SSSR, vol. 115, no. 2, pp. 271-273, [in Russian].

3. Lyamshev, L. M. 1958, “Sound scattering by a thin rod of finite length”, Akust. Zhurnal, vol. 4, no. 1, pp. 51-58, [in Russian].

4. Andreeva, I. B. & Samovol’kin, V. G. 1976, “Sound scattering by elastic cylinders of finite length”, Akust. Zhurnal, vol. 22, no. 5, pp. 637-643, [in Russian].

5. Su J.-H., Varadan, V. V., Varadan, V. K. & Flax L. 1980, “Acoustic wave scattering by a finite elastic cylinder in water”, J. Acoust. Soc. Amer., vol. 68. no. 3. Р. 686-691.

6. Muzychenko, V.V. & Rybak, S. A. 1986, “Amplitude of resonant sound scattering by a finite cylindrical shell in a liquid”, Akust. Zhurnal, vol. 32, no. 1, pp. 129-131, [in Russian].

7. Muzychenko, V. V. & Rybak, S.A. 1986, “Some features of sound scattering by finite cylindrical shells”, Akust. Zhurnal, vol. 32, no. 5, pp. 699-701, [in Russian].

8. Belogortsev, A. S. & Muzychenko, V. V. 1991, “Influence of a restriction of a cylindrical shell on a backscattering amplitude”, Akust. Zhurnal, vol. 37, no. 2, pp. 228-234, [in Russian].

9. Dotsenko, I. E., Muzychenko, V. V. & Rybak, S. A. 1991, “Sound scattering on the limited elastic cylindrical shell with semispherical endings”, Akust. Zhurnal, vol. 37, no. 5, pp. 922-932, [in Russian].

10. Shenderov, E. L. 1989, “Radiation and Scattering of Sound”, Sudostroenie, Leningrad, 302 p. [in Russian].

11. Lebedev, A. V., & Khil’ko, A. I. 1992, “Sound scattering by limited length elastic cylindrical shells with thin walls”, Akust. Zhurnal, vol. 38, no. 6, pp. 1057-1065, [in Russian].

12. Belogortsev, A. S., Bugayev, V. V. & Muzychenko, V. V. 1991, “Sound scattering on the limited elastic cylindrical shell with semispherical endings”, Akust. Zhurnal, vol. 39, no. 4, pp. 598-604, [in Russian].

13. Kosarev, O. I. 2015, “Secondary hydroacoustic field generated by a solid finite cylinder in the far field”, Probl. Mashinostr. Avtom., no. 4, pp. 99-103, [in Russian].

14. Kosarev, O. I. 2017, “Diffraction of sound by a hard cylinder of finite length in the far field”, Vestn. Nauchno-Tekh. Razvit., no. 3 (115), pp. 30-37, [in Russian].

15. Tolokonnikov, L. A. & Efimov, D.Yu. 2023, “Scattering of Sound Waves by a Finite Length Elastic Cylinder with an Inhomogeneous Coating”, Mathematical Models and Computer Simulations, vol. 15, no. 5, pp. 863-876.

16. Shenderov, E. L. 1972, “Wave problems of underwater acoustics”, Sudostroenie, Leningrad, 352 p. [in Russian].

17. Ivanov, E. A. 1968, “Diffraction of electromagnetic waves by two bodies”, Nauka i tekhnika, Minsk, 584 p., [in Russian].

18. Nowacki, W. 1973, “Teoria sprezystosci”, PWN, Warszawa.

19. Kurant, R. 1964, “Partial Differential Equations”, Mir, Moscow, 830 p., [in Russian].

20. Lebedev, N. N. 1963, “Special Functions and their Applications”, Fizmatgiz, Moscow, 358 p., [in Russian].

21. Kalitkin, N.N. 1978, “Numerical methods”, Fizmatgiz, Moscow, 512 p., [in Russian].

22. Zavyialov, Yu. S., Kvasov, B. I. & Miroshnichenko, V. L. 1980, “Spline function methods”, Nauka, Moscow, 352 p., [in Russian].

23. Veksler, N. D., Korsunskii, V. M. & Rybak, S. A. 1990, “Scattering of an obliquely incident plane acoustic wave by circular cylindrical shell”, Akust. Zhurnal, vol. 36, no. 1, pp. 12-16, [in Russian].

24. Korobov, N. M. 2004, “Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis]”, 2nd ed., MTSNMO, Moscow, Russia.

25. Dobrovol‘skii, N. N., Skobel‘tsyn, S. A., Tolokonnikov, L. A., Larin, N. V. 2021, “About application of number-theoretic grids in problems of acoustics“, Chebyshevskii sbornik, vol. 22, no. 3, pp. 368-382, [in Russian].


Review

For citations:


Dobrovol’skii N.N., Efimov D.Yu., Tolokonnikov L.A. Diffraction of sound waves on an inhomogeneous thick-walled elastic cylindrical shell of finite length. Chebyshevskii Sbornik. 2023;24(5):274-288. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-5-274-288

Views: 508


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)