Preview

Chebyshevskii Sbornik

Advanced search

Some generalizations of the Faa Di Bruno formula

https://doi.org/10.22405/2226-8383-2023-24-5-180-193

Abstract

The focus of the article is the classical Faa Di Bruno formula for computing higher-order derivatives of a complex function 𝐹(𝑢(𝑥)). Here is a version of the proof of this formula. Then we prove a generalization of the Faa Di Bruno formula to the case of a complex function with an inner function 𝑢(𝑥, 𝑦) depending on two independent variables. The paper presents a formula for the 𝑛-th derivative of a complex function, when the argument of the outer function is a
vector with an arbitrary number of components (functions of one variable). The article also considers examples of finding higher-order derivatives, illustrating both the classical Faa Di Bruno formula and its generalizations.

About the Author

Pavel Nikolaevich Sorokin
Scientific Research Institute for System Analyze of the Russian Academy of Science
Russian Federation

candidate of physical and mathematical sciences



References

1. Fa´a di Bruno F. 1855, “Sullo sviluppo delle funziones”, Annali di Scuenze Matematiche e Fisiche, 6, pp. 479-480.

2. Fa´a di Bruno F. 1857, “Note sur un nouvelle formulae de calcul differentiel”, Quart. J. Math., 1, pp. 359-360.

3. Mishkov R. L. 2000, “Generalization of the formula of Fa´a di Bruno for a composite function with a vector argument”, Internat. J. Math., Math. Sci., vol. 24, no. 7, pp. 481-491.

4. Roman S. 1980, “The formula of Fa´a di Bruno”, Amer. Math. Monthly, vol. 87, no. 10, pp. 805-809.

5. Dvoryaninov S. V., Silvanovich M. I. 2009, “On the Fa´a di Bruno formula for derivatives of a complex function”, Matematicheskoye obrazovaniye, 1 (49), pp. 22-26.

6. Arhipov G. I., Chubarikov V.N., Sadovnichiy V. A. 2003, Lectures on mathematical analysis. M. — Drofa, pp. 640.

7. Bell E. T. 1927, “Partition polynomials”, Ann. Math., vol. 29, pp. 38-46.

8. Comtet L. 1974, Advanced Combinatorics. D. Reidel Publishing Co., Dordrecht.

9. Johnson W.P. 2002, “The curious history of Fa´a di Bruno’s formula”, Amer. Math. Monthly, vol. 109, pp. 217-234.

10. Chubarikov V. N. 2020, “A generalized Binomial theorem and a summation formulas”, Chebyshevskii Sbornik, 21 (4), pp. 270-301.

11. Constantine G. M., Savits T. H., 1996, “A multivariate Fa´a di Bruno formula with applications”, Trans. Amer. Math. Soc., vol. 348, no. 2, pp. 503-520.

12. Shabat A. B., Efendiev M. Kh., 2017, “Applications of the Fa´a di Bruno formula”, Ufimskiy matematicheskiy zhurnal, vol. 9, no. 3, pp. 132–137.

13. Demidovich B.P. 1998, Sbornik zadach i uprazhneniy po matematicheskomu analizu. Uchebnoye posobiye. 14 izdaniye, ispr. M. — Izd-vo Moskovskogo universiteta, pp. 624.

14. Frabetti A., Manchon D., 2014, “Five interpretation of Fa´a di Bruno’s formula”, https://arxiv.org/pdf/1402.5551.pdf.

15. Craik A.D.D., 2005, “Prehistory of Fa´a di Bruno’s formula”, Amer. Math. Monthly, vol. 112, no 2, pp. 119–130.

16. Arbogast L. F. A., 1800, “Du Calcul des D´erivations”, Levrault, Strasbourg.


Review

For citations:


Sorokin P.N. Some generalizations of the Faa Di Bruno formula. Chebyshevskii Sbornik. 2023;24(5):180-193. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-5-180-193

Views: 465


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)