Preview

Chebyshevskii Sbornik

Advanced search

Nearly trans-Sasakian almost 𝐶(𝜆)-manifolds

https://doi.org/10.22405/2226-8383-2023-24-5-153-166

Abstract

The nearly trans-Sasakian manifolds, which are almost 𝐶(𝜆)-manifolds, are considered. On the space of the adjoint G-structure, the components of the Riemannian curvature tensor, the Ricci tensor of the nearly trans-Sasakian manifolds, and the almost 𝐶(𝜆)-manifolds are obtained.
Identities are obtained that are satisfied by the Ricci tensor of nearly trans-Sasakian manifolds.
It is proved that a Ricci-flat almost 𝐶(𝜆)-manifold is locally equivalent to the product of a Ricciflat K¨ahler manifold and a real line. Identities are obtained that are satisfied by the Ricci tensor of an almost 𝐶(𝜆)-manifold. It is proved that the Ricci curvature of an almost 𝐶(𝜆)-manifold in the direction of the structure vector is equal to zero if and only if it is cosymplectic, and hence locally equivalent to the product of a K¨ahler manifold and a real line. An identity is obtained that is satisfied by the Riemannian curvature tensor of a nearly trans-Sasakian manifold, which is an almost 𝐶(𝜆)-manifold. It is proved that for a nearly trans-Sasakian manifold M the following conditions are equivalent: 1) the manifold M is an almost 𝐶(𝜆)-manifold; 2) the manifold M is a closely cosymplectic manifold; 3) the manifold M is locally equivalent to the product of a nearly K¨ahler manifold and the real line. In the case when the manifold M is a trans-Sasakian almost
𝐶(𝜆)-manifold, the manifold M is cosymplectic, and hence locally equivalent to the product of a K¨ahler manifold and a real line. For an NTS-manifold of dimension greater than three, which is almost a 𝐶(𝜆)-manifold, the pointwise constancy of the Φ-holomorphic sectional curvature implies global constancy. A complete classification of such manifolds is obtained.

About the Authors

Aligadzhi Rabadanovich Rustanov
Institute of Digital Technologies and Modeling in Construction; Moscow State University of Civil Engineering
Russian Federation

candidate of physical and mathematical sciences



Galina Vasilyevna Teplyakova
Institute of Mathematics and Digital Technologies; Orenburg State University
Russian Federation

candidate of pedagogical sciences



Svetlana Vladimirovna Kharitonova
Institute of Mathematics and Digital Technologies; Orenburg State University
Russian Federation

candidate of physical and mathematical sciences, associate professor



References

1. Janssen, D. & Vanhecke, L. 1981, “Almost contact structures and curvature tensors”,Kodai Math. J., vol. 4, pp. 1–27. DOI: 10.2996/kmj/1138036310.

2. Olszak, Z.& Rosca R. 1991, “Normal locally conformal almost cosymplectic manifolds”, Publ. Math. Debrecen, vol. 39, pp. 315–323. DOI: 10.5486/PMD.1991.39.3-4.12.

3. Kharitonova, S. V. 2011, “Almost 𝐶(𝜆)-manifolds”, J. Math. Sci., vol. 177, no. 5, pp. 742–747.

4. DOI: 10.1007/s10958-011-0504-6.

5. Ali Akbar. 2013, “Some Results on Almost 𝐶(𝜆)-manifolds”, International J. of Math. Sci. and Engg. Appls., vol. 7, no. 1, pp. 255–260.

6. Ali Akbar & Sarkar, A. 2013, “On the Conharmonic and Concircular curvature tensors of almost 𝐶(𝜆)-Manifolds”, Int. J. Adv. Math. Sci., vol. 1, no. 3, pp. 134–138. DOI: 10.14419/ijams.v1i3.981.

7. Ali Akbar & Sarkar, A. 2014, “Almost 𝐶(𝜆)-manifolds admitting 𝑊2 curvature tensor”, J. Rajashtan Acad. Phys. Sci., vol. 13, no. 1, pp. 31–38.

8. Rustanov, А.Р., Kharitonova, S.V. & Kazakova, O. N. 2015, “About two classes of almost 𝐶(𝜆)-manifolds”, Vestnik OSU, no. 3, pp. 228–231.(in Russian).

9. Ashoka, S. R., Bagewadib, S. C. & Gurupadavva Ingalahallic. 2014, “Curvature tensor of almost 𝐶(𝜆)-manifolds”, Malaya J. Math., vol. 2, no. 1, pp. 10–15.

10. Ashoka, S. R., Bagewadib, S. C. & Gurupadavva Ingalahallic. 2016,“A Study on Ricci Solitons in almost 𝐶(𝜆) Manifolds”, Sohag J. Math., vol. 3, no. 2, pp. 83-88. DOI: 10.18576/sjm/030206.

11. Chaturvedi, B. B. & Gupta, B. G. 2019, “C-Bochner curvature tensor on almost 𝐶(𝜆)-manifolds”, Palestine J. Math., vol. 8, no. 2,pp. 258-265.

12. Atceken, M. & Yildirim, U. 2015, “On curvature tensors of an almost 𝐶(𝛼)-manifold”, Int. J. Phys. Math. Sci., vol. 5, no. 1, pp. 53-61.

13. Atceken, M. & Yildirim, U. 2016,“Almost 𝑐(𝛼)-manifolds satisfying certain curvature conditions”, Adv. Stud. Contemp. Math., vol. 26, no. 3, pp. 567-578.

14. Atceken, M. & Yildirim, U. 2015, “On almost 𝐶(𝛼)-manifold satisfying certain conditions on the concircular curvature tensor”, Pure Appl. Math. J., Special Issue: Appl. Geom., vol. 4, no. 1-2, pp. 31-34. DOI: 10.11648/j.pamj.s.2015040102.18.

15. Yildirim, U. 2018, “On almost 𝐶(𝛼)-manifold satisfying some conditions on the Weyl projective curvature tensor”, J. Adv. Math., vol. 15, pp. 8145-8154, DOI: 10.24297/jam.v15i0.8020.

16. Rustanov, A. R., Polkina, E. A. & Kharitonova, S. V. 2020, “On some aspects of the geometry of almost 𝐶(𝜆)-manifolds”, Izv. Vuzov. Sev.-Kav. Reg. Nat. Sci., no. 3, pp. 19–24. DOI: 10.18522/1026-2237-2020-3-19-24.

17. Rustanov A. R., Polkina E. A. & Kharitonova S. V. 2022, “Projective invariants of almost 𝐶(𝜆)-manifolds”, Ann. Glob. Anal. Geom., vol. 61, pp. 459-467. DOI: 10.1007/s10455-021-09818-w.

18. Kirichenko, V. F. & Rustanov, A. R. 2002, “Differential geometry of quasi-Sasakian manifolds”, Sb. Math., vol. 193, no. 7-8, pp. 1173–1201. DOI: 10.1070/SM2002v193n08ABEH000675.

19. Kirichenko, V. F. 2013, “Differential-geometric structures on manifolds , Odessa, Pechatnyy dom, 458 p. (in Russian).

20. Rustanov, A. R., Melekhina, T. L. & Kharitonova, S. V. 2023, “On the geometry of nearly trans-Sasakian manifolds”, Turk. J. Math., vol. 47, no. 4, Article 7. DOI: 10.55730/1300-0098.3417.

21. Gray, A. & Hervella L. 1980, “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Math. Pure ed Appl., vol. 326, no. 123, pp. 35–58.


Review

For citations:


Rustanov A.R., Teplyakova G.V., Kharitonova S.V. Nearly trans-Sasakian almost 𝐶(𝜆)-manifolds. Chebyshevskii Sbornik. 2023;24(5):153-166. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-5-153-166

Views: 244


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)