Nearly trans-Sasakian almost 𝐶(𝜆)-manifolds
https://doi.org/10.22405/2226-8383-2023-24-5-153-166
Abstract
The nearly trans-Sasakian manifolds, which are almost 𝐶(𝜆)-manifolds, are considered. On the space of the adjoint G-structure, the components of the Riemannian curvature tensor, the Ricci tensor of the nearly trans-Sasakian manifolds, and the almost 𝐶(𝜆)-manifolds are obtained.
Identities are obtained that are satisfied by the Ricci tensor of nearly trans-Sasakian manifolds.
It is proved that a Ricci-flat almost 𝐶(𝜆)-manifold is locally equivalent to the product of a Ricciflat K¨ahler manifold and a real line. Identities are obtained that are satisfied by the Ricci tensor of an almost 𝐶(𝜆)-manifold. It is proved that the Ricci curvature of an almost 𝐶(𝜆)-manifold in the direction of the structure vector is equal to zero if and only if it is cosymplectic, and hence locally equivalent to the product of a K¨ahler manifold and a real line. An identity is obtained that is satisfied by the Riemannian curvature tensor of a nearly trans-Sasakian manifold, which is an almost 𝐶(𝜆)-manifold. It is proved that for a nearly trans-Sasakian manifold M the following conditions are equivalent: 1) the manifold M is an almost 𝐶(𝜆)-manifold; 2) the manifold M is a closely cosymplectic manifold; 3) the manifold M is locally equivalent to the product of a nearly K¨ahler manifold and the real line. In the case when the manifold M is a trans-Sasakian almost
𝐶(𝜆)-manifold, the manifold M is cosymplectic, and hence locally equivalent to the product of a K¨ahler manifold and a real line. For an NTS-manifold of dimension greater than three, which is almost a 𝐶(𝜆)-manifold, the pointwise constancy of the Φ-holomorphic sectional curvature implies global constancy. A complete classification of such manifolds is obtained.
About the Authors
Aligadzhi Rabadanovich RustanovRussian Federation
candidate of physical and mathematical sciences
Galina Vasilyevna Teplyakova
Russian Federation
candidate of pedagogical sciences
Svetlana Vladimirovna Kharitonova
Russian Federation
candidate of physical and mathematical sciences, associate professor
References
1. Janssen, D. & Vanhecke, L. 1981, “Almost contact structures and curvature tensors”,Kodai Math. J., vol. 4, pp. 1–27. DOI: 10.2996/kmj/1138036310.
2. Olszak, Z.& Rosca R. 1991, “Normal locally conformal almost cosymplectic manifolds”, Publ. Math. Debrecen, vol. 39, pp. 315–323. DOI: 10.5486/PMD.1991.39.3-4.12.
3. Kharitonova, S. V. 2011, “Almost 𝐶(𝜆)-manifolds”, J. Math. Sci., vol. 177, no. 5, pp. 742–747.
4. DOI: 10.1007/s10958-011-0504-6.
5. Ali Akbar. 2013, “Some Results on Almost 𝐶(𝜆)-manifolds”, International J. of Math. Sci. and Engg. Appls., vol. 7, no. 1, pp. 255–260.
6. Ali Akbar & Sarkar, A. 2013, “On the Conharmonic and Concircular curvature tensors of almost 𝐶(𝜆)-Manifolds”, Int. J. Adv. Math. Sci., vol. 1, no. 3, pp. 134–138. DOI: 10.14419/ijams.v1i3.981.
7. Ali Akbar & Sarkar, A. 2014, “Almost 𝐶(𝜆)-manifolds admitting 𝑊2 curvature tensor”, J. Rajashtan Acad. Phys. Sci., vol. 13, no. 1, pp. 31–38.
8. Rustanov, А.Р., Kharitonova, S.V. & Kazakova, O. N. 2015, “About two classes of almost 𝐶(𝜆)-manifolds”, Vestnik OSU, no. 3, pp. 228–231.(in Russian).
9. Ashoka, S. R., Bagewadib, S. C. & Gurupadavva Ingalahallic. 2014, “Curvature tensor of almost 𝐶(𝜆)-manifolds”, Malaya J. Math., vol. 2, no. 1, pp. 10–15.
10. Ashoka, S. R., Bagewadib, S. C. & Gurupadavva Ingalahallic. 2016,“A Study on Ricci Solitons in almost 𝐶(𝜆) Manifolds”, Sohag J. Math., vol. 3, no. 2, pp. 83-88. DOI: 10.18576/sjm/030206.
11. Chaturvedi, B. B. & Gupta, B. G. 2019, “C-Bochner curvature tensor on almost 𝐶(𝜆)-manifolds”, Palestine J. Math., vol. 8, no. 2,pp. 258-265.
12. Atceken, M. & Yildirim, U. 2015, “On curvature tensors of an almost 𝐶(𝛼)-manifold”, Int. J. Phys. Math. Sci., vol. 5, no. 1, pp. 53-61.
13. Atceken, M. & Yildirim, U. 2016,“Almost 𝑐(𝛼)-manifolds satisfying certain curvature conditions”, Adv. Stud. Contemp. Math., vol. 26, no. 3, pp. 567-578.
14. Atceken, M. & Yildirim, U. 2015, “On almost 𝐶(𝛼)-manifold satisfying certain conditions on the concircular curvature tensor”, Pure Appl. Math. J., Special Issue: Appl. Geom., vol. 4, no. 1-2, pp. 31-34. DOI: 10.11648/j.pamj.s.2015040102.18.
15. Yildirim, U. 2018, “On almost 𝐶(𝛼)-manifold satisfying some conditions on the Weyl projective curvature tensor”, J. Adv. Math., vol. 15, pp. 8145-8154, DOI: 10.24297/jam.v15i0.8020.
16. Rustanov, A. R., Polkina, E. A. & Kharitonova, S. V. 2020, “On some aspects of the geometry of almost 𝐶(𝜆)-manifolds”, Izv. Vuzov. Sev.-Kav. Reg. Nat. Sci., no. 3, pp. 19–24. DOI: 10.18522/1026-2237-2020-3-19-24.
17. Rustanov A. R., Polkina E. A. & Kharitonova S. V. 2022, “Projective invariants of almost 𝐶(𝜆)-manifolds”, Ann. Glob. Anal. Geom., vol. 61, pp. 459-467. DOI: 10.1007/s10455-021-09818-w.
18. Kirichenko, V. F. & Rustanov, A. R. 2002, “Differential geometry of quasi-Sasakian manifolds”, Sb. Math., vol. 193, no. 7-8, pp. 1173–1201. DOI: 10.1070/SM2002v193n08ABEH000675.
19. Kirichenko, V. F. 2013, “Differential-geometric structures on manifolds , Odessa, Pechatnyy dom, 458 p. (in Russian).
20. Rustanov, A. R., Melekhina, T. L. & Kharitonova, S. V. 2023, “On the geometry of nearly trans-Sasakian manifolds”, Turk. J. Math., vol. 47, no. 4, Article 7. DOI: 10.55730/1300-0098.3417.
21. Gray, A. & Hervella L. 1980, “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Math. Pure ed Appl., vol. 326, no. 123, pp. 35–58.
Review
For citations:
Rustanov A.R., Teplyakova G.V., Kharitonova S.V. Nearly trans-Sasakian almost 𝐶(𝜆)-manifolds. Chebyshevskii Sbornik. 2023;24(5):153-166. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-5-153-166