Preview

Chebyshevskii Sbornik

Advanced search

Verification of the generalized hypothesis of Mishchenko–Fomenko for Lie algebras of small dimension

https://doi.org/10.22405/2226-8383-2023-24-5-126-135

Abstract

In the case of Lie algebras g of small dimension ≤ 7, an enhanced version of the Generalised argument shift conjecture is proved, namely, it is shown that for any element 𝑎 ∈ g* on the dual space g* there is a complete set of polynomials in the bi-involution with respect to the standard Poisson-Lie bracket and the frozen argument bracket associated with the covector 𝑎.

About the Author

Fedor Igorevich Lobzin
Lomonosov Moscow State University; The Center of Fundamental and Applied Mathematics
Russian Federation


References

1. Mishchenko A. S. Fomenko A. T. 1978, “Euler equations on finite-dimensional Lie groups”, Math. USSR-Izv., Vol. 12, no. 2, pp. 371–389.

2. Bolsinov A. V., Zhang P. 2016, “Jordan–Kronecker invariants of finite–dimensional Lie algebras”, Transformation Groups., Vol. 21, pp. 51–86.

3. Bolsinov A. V., Matveev V. S., Miranda E., Tabachnikov S. 2018, “Open problems, questions and challenges in finitedimensional integrable systems” // Phil. Trans. R., Vol. 376.

4. Sadetov S. T. 2004, “A proof of the Mishchenko-–Fomenko conjecture”, Dokl. Math., Vol. 70, no. 1, pp. 635–638.

5. Bolsinov A. V. 1992, “Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution”, Math. USSR–Izv., Vol. 38, no. 1, pp. 69–90.

6. Vorushilov K. C. 2021, “Complete sets of polynomials in bi-involution on nilpotent sevendimensional Lie algebras”, Sb. Math., Vol. 212, no. 9, pp. 1193–1207.

7. Patera J., Sharp R. T., Winternitz P., Zassenhaus H. 1976, “Invariants of real low dimension Lie algebras”, J. Mathematical Phys. .vol. 17, no. 6, pp. 986–994.

8. Ooms A. I. 2012, “The Poisson center and polynomial, maximal Poisson commutative subalgebras, especially for nilpotent Lie algebras of dimension at most seven”, Journal of algebra., Vol. 365, pp. 83–113.

9. Ming-Peng Gong. 1998, “Classification of Nilpotent Lie Algebras of Dimension 7 (over algebraically closed fields and R)”, PhD thesis, University of Waterloo, Ontario, Canada, http://hdl.handle.net/10012/1148.


Review

For citations:


Lobzin F.I. Verification of the generalized hypothesis of Mishchenko–Fomenko for Lie algebras of small dimension. Chebyshevskii Sbornik. 2023;24(5):126-135. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-5-126-135

Views: 529


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)