A proof of the L’Hˆopital’s rule
https://doi.org/10.22405/2226-8383-2023-24-5-49-69
Abstract
In this paper a new proof of the L’Hˆopital’s rule proposed for calculus lecturers is presented. The according theorem is formulated and proved for the six types of limit: 𝑥 → 𝑎, 𝑥 → 𝑎 + 0, 𝑥 → 𝑎 − 0, 𝑥 → +∞, 𝑥 → −∞, 𝑥 → +∞, for the two indeterminate forms 0/0 and ∞/∞ and also for four values of limit 𝐴 ∈ (−∞,+∞), 𝐴 = −∞, 𝐴 = +∞, 𝐴 = ∞. Thus, the theorem covers 6 * 2 * 4 = 48 cases of the L’Hˆopital’s rule. The presented proof of the theorem differs from the traditional ones by using not only the Cachy definition of limit a function but also the Heine one. The single partial limit theorem is used as the important auxiliary statement allowing to apply the Heine definition of limit. This statement also allows to apply arithmetic properties of sequence limits to the proof of the indeterminate form ∞/∞ and the limit 𝑥 → 𝑎 + 0, i.e. for the case where the most significant simplification is achieved.
About the Author
Ilia Borisovich KazakovRussian Federation
candidate of physical and mathematical sciences
References
1. Aleksandryan, R. A. & Mirzahanyan, E. A. 1979, «Obshchaya topologiya [General topology]», Vysshaya shkola, Moscow, Russia, 336 pp.
2. Besov O. V. 2014, «Lekcii po matematicheskomu analizu [Lectures on calculus]», FIZMATLIT, Moscow, Russia, 480 pp.
3. Zorich, V. A. 2019, «Matematicheskij analiz. CHast’ 1. [Calculus. Part 1]», 10th edition, MCCME, Moscow, Russia, xii+564 pp.
4. Ivanov, G. E. 2017, «Lekcii po matematicheskomu analizu [Lectures on calculus]», MIPT, Moscow, Russia, 340 pp.
5. Kantorovich, L. V. & Akilov, G. P. 1984, «Funkcional’nyj analiz [Functional analysis]», Nauka, Moscow, Russia, 752 pp.
6. Kudryavcev, L. D. 1988, «Kurs matematicheskogo analiza [The course of calculus]. Volume 1», 2nd edition, Vysshaya shkola, Moscow, Russia, 713 pp.
7. Lavrov, I. A. & Maksimova, L. L. 1975, «Zadachi po teorii mnozhestv, matematicheskoj logike i teorii algoritmov [Problems in Set Theory, Mathematical Logic and the Theory of Algorithms]», Nauka, Moscow, Russia, 240 pp.
8. Nikol’skij, S. M. 2001, «Kurs matematicheskogo analiza [The course of calculus]», 6th edition, FIZMATLIT, Moscow, Russia., 592 pp.
9. Fihtengol’c, G. M. 1966, «Kurs differencial’nogo i integral’nogo ischisleniya [The course of differential and integral calculus]», Nauka, Moscow, Russia, 607 pp.
10. Engel’king, R. 1986, «Obshchaya topologiya [General topology]», Mir, Moscow, Russia, 752 pp.
11. Boas, R. P. 1986, «Counterexamples to L’Hˆopital’s rule», American Mathematical Monthly, vol. 93, no. 9, pp. 644 — 645.
12. Lee, C. M. 1977, «Generalizations of l’Hˆopital’s rule», Proc. Amer. Math. Soc, vol. 66, no. 2, pp. 315-320.
13. Tausk, D. V., “Counterexample to l’Hˆopital’s rule”, Available at: https://www.ime.usp.br/~tausk/texts/CounterExampleLHospital.pdf
14. Taylor, A. E. 1952, «L’Hospital’s Rule», The American Mathematical Monthly, Volume: 59, Issue: 1, pp. 20 — 24.
15. Vianello, M. 1993, «A generalization of l’Hˆopital’s rule via absolute continuity and Banach modules», Real Analysis Exchange, vol. 18, no. 2, pp. 557-567.
16. Vyborny, R. & Nester, R. 1989, «L’Hˆopital’s rule, a counterexample», Elemente der Mathematik, Volume: 44, Issue: 5, pp. 116-121.
Review
For citations:
Kazakov I.B. A proof of the L’Hˆopital’s rule. Chebyshevskii Sbornik. 2023;24(5):49-69. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-5-49-69