On cardinality of character sums with Beatty sequences associated with composite modules
https://doi.org/10.22405/2226-8383-2023-24-5-5-15
Abstract
Non homogeneous Beatty sequences play important rules in Wythoff games and invariant games such as on how to beat your Wytoff games opponent on three fronts and give properties into a decision of the procedure relying only on a few algebraic tests. This paper discusses on the cardinality of character sums and their estimation with respect to non homogeneous Beatty sequences 𝛽𝛼 = ⌊𝛼𝑛 + 𝛽 : 𝑛 = 1, 2, 3...⌋ where 𝛽 in real numbers and 𝛼 greater than zero is
irrational. In order to estimate the cardinality, the discrepancy is used to measure the number of uniform distribution for Beatty sequences. Pigeonhole principle is discussed on the estimation of the fractional part of Beatty sequences involve. Meanwhile, Cauchy inequalities is applied to expand the double character sums. Then, the cardinality of double character sums is obtained by applying the extension properties of additive and multiplicative character sums. The result
obtained is depend on the existing of identity of additive and multiplicative character sums and the uniformly distribution modulo 1. The result of the estimation in this study over composite modules is more general compared to previous studies, which only cover prime modules.
About the Authors
Ismail AllakovUzbekistan
doctor of physical and mathematical sciences, professor
binti Deraman Fatanah
Malaysia
doctor of physical and mathematical sciences
binti Sapar Siti Hasana
Malaysia
doctor of physical and mathematical sciences, professor
binti Ismail Shahrina
Russian Federation
doctor of physical and mathematical sciences
References
1. Chua L., Park S., Smith G.D., 2015, “Bounded Gaps Between Primes in Special Sequences” // Proceedings of The American Mathematical Society, Springer Berlin Heidelberg, vol. 143, pp. 4597-4611. (http://doi.org/10.1090/proc/12607)
2. Guloglu A. M., Nevans C. W., 2008, “Sums of multiplicative functions over a Beatty sequence” // Bull. Austral. Math. Soc., 78, pp. 327–334. (https://doi.org/10.1017/S0004972708000853)
3. Simpson R. J., 1991, “Disjoint covering systems rational Beatty sequences” // Discrete Mathematics, 92, pp. 361-369.
4. Banks W. D., Shparlinski I. E., 2006, “Non-residues and primitive roots in Beatty sequences” // Bull. Austral. Math. Soc., 73, pp. 433–443. (https://doi.org/10.1017/S0004972700035449)
5. Banks W. D., Shparlinski I. E., 2006, “Short character sums with beatty sequences” // Math. Res. Lett., 13, pp. 1–100N. (https://doi.org/10.4310/MRL.2006.v13.n4.a4)
6. Cassaigne J., Duch˜Aane E., Rigo M., 2016, “Nonhomogeneous beatty sequences leading to invariant games” // SIAM Journal on Discrete Mathematics, 30, pp. 1798–1829. (https://doi.org/10.1137/130948367)
7. Kimberling C., “Beatty sequences and trigonometric functions” // INTEGERS 16, 2016.
8. (https://www.emis.de/journals/INTEGERS/papers/ q15/q15.pdf)
9. Deraman F. , Sapar S. H., Johari M. A. M., Atan K. A. M., Rasedee A. F. N., 2019, “Extended Bounds of Beatty Sequence Associated with Primes” // International Journal of Engineering and Advanced Technology, pp. 115-118.
10. Polya G., 1918, “Uher die Verteilung der quadratischen Reste und Nichtreste” // Nachrichten Knigl. Ges. Wiss. Gttingen, pp. 21-29.
11. Vinogradov I. M., 1919, “Uber die Verteilung der quadratischen Reste und Nichtrete” // J. Soc. Phys. Math. Univ., 2, pp. 1-14.
12. Friedlander J., Iwaniec H., 1993, “Estimates for character sums” // Proceedings of The American Mathematical Soc., vol. 119, no. 2, pp. 365-372.
13. Cassaigne J., Duchlne E., Rigo M., 2016, “Nonhomogeneous Beatty sequencesleading to invariant games” // SIAM Journal on Descrete Mathematics, vol. 30:3, pp. 1798-1829. (https://doi.org/10.1137/130948367)
14. Fraenkel A. S., 1982, “How to beat your Wythoff games opponents on three fronts” // Amer. Math. Monthly, 89, pp. 353-361, 1982.
15. Cassaigne J., Duchene E., Rigo M., 2013, “Invariant games and non-homogeneous Beatty sequences” // Arxiv, vol. abs/1312.2233. (https://arxiv.org/abs/1312.2233)
16. Lidl R., Niederreiter H., 1974, “Uniform distribution of sequences” // New York, John Wiley Sons, 1974.
17. Hlawka E., Taschner R., Schoißengeier J., 1991, “Geometric and Analytic Number Theory” // Springer-Verlag, 1991.
18. Lidl R. and Niederreiter H., 1983, “Introduction To Finite Fields and Their Applications” // Cambridge University Press, 1983.
Review
For citations:
Allakov I., Fatanah b., Siti Hasana b., Shahrina b. On cardinality of character sums with Beatty sequences associated with composite modules. Chebyshevskii Sbornik. 2023;24(5):5-15. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-5-5-15