Preview

Chebyshevskii Sbornik

Advanced search

On the estimation of the error of quadrature formulas with optimal parallelepipedal grids II

https://doi.org/10.22405/2226-8383-2023-24-4-345-353

Abstract

The paper obtained a new estimate for the error of quadrature formulas with optimal parallelepipedal meshes modulo 𝑁.

About the Authors

Nikolay Mikhailovich Korobov

Russian Federation

doctor of physical and mathematical sciences, professor



Mikhail Nikolaevich Dobrovol’skii
Geophysical centre of RAS
Russian Federation

candidate of physical and mathematical sciences



Nikolai Nikolaevich Dobrovol’skii
Tolstoy Tula State Pedagogical University
Russian Federation

candidate of physical and mathematical sciences



Nikolai Mikhailovich Dobrovol’skii
Tula State Lev Tolstoy Pedagogical University
Russian Federation

doctor of physical and mathematical sciences, professor



References

1. Dobrovol’skii, N. M. & Korobov, N. M. 2002, “On the error estimation of quadrature formulas with optimal parallelepipedal grids”, Chebyshevskij sbornik, vol. 3, no. 1(3), pp. 41–48.

2. Korobov, N.M. 1963, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], Fizmat-giz, Moscow, Russia.

3. Korobov, N.M. 2004, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], 2nd ed, MTSNMO, Moscow, Russia.

4. N. K. Ter-Gukasova, M. N. Dobrovol’skii, N. N. Dobrovol’skii, N. M. Dobrovol’skii, 2022, "On the number of lattice points of linear comparison solutions in rectangular areas Chebyshevskii sbornik, vol. 23, no. 5, pp. 130–144.


Review

For citations:


Korobov N.M., Dobrovol’skii M.N., Dobrovol’skii N.N., Dobrovol’skii N.M. On the estimation of the error of quadrature formulas with optimal parallelepipedal grids II. Chebyshevskii Sbornik. 2023;24(4):345-353. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-4-345-353

Views: 222


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)