On the estimation of the error of quadrature formulas with optimal parallelepipedal grids II
https://doi.org/10.22405/2226-8383-2023-24-4-345-353
Abstract
The paper obtained a new estimate for the error of quadrature formulas with optimal parallelepipedal meshes modulo 𝑁.
About the Authors
Nikolay Mikhailovich KorobovRussian Federation
doctor of physical and mathematical sciences, professor
Mikhail Nikolaevich Dobrovol’skii
Russian Federation
candidate of physical and mathematical sciences
Nikolai Nikolaevich Dobrovol’skii
Russian Federation
candidate of physical and mathematical sciences
Nikolai Mikhailovich Dobrovol’skii
Russian Federation
doctor of physical and mathematical sciences, professor
References
1. Dobrovol’skii, N. M. & Korobov, N. M. 2002, “On the error estimation of quadrature formulas with optimal parallelepipedal grids”, Chebyshevskij sbornik, vol. 3, no. 1(3), pp. 41–48.
2. Korobov, N.M. 1963, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], Fizmat-giz, Moscow, Russia.
3. Korobov, N.M. 2004, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], 2nd ed, MTSNMO, Moscow, Russia.
4. N. K. Ter-Gukasova, M. N. Dobrovol’skii, N. N. Dobrovol’skii, N. M. Dobrovol’skii, 2022, "On the number of lattice points of linear comparison solutions in rectangular areas Chebyshevskii sbornik, vol. 23, no. 5, pp. 130–144.
Review
For citations:
Korobov N.M., Dobrovol’skii M.N., Dobrovol’skii N.N., Dobrovol’skii N.M. On the estimation of the error of quadrature formulas with optimal parallelepipedal grids II. Chebyshevskii Sbornik. 2023;24(4):345-353. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-4-345-353