Invariant differential polynomials
https://doi.org/10.22405/2226-8383-2023-24-4-212-238
Abstract
Based on the method proposed in the article for solving the so-called (𝑟, 𝑠)-systems of linear equations proven that the orders of homogeneous invariant differential operators 𝑛 of smooth real functions of one variable take values from 𝑛 to (𝑛(𝑛+1))/2 , and the dimension of the space of all such operators does not exceed 𝑛!. A classification of invariant differential operators of order 𝑛 + 𝑠 is obtained for 𝑠 = 1, 2, 3, 4, and for 𝑛 = 4 for all orders from 4 to 10. The only, up to factors, homogeneous invariant differential operators of the smallest order 𝑛 and the largest order (𝑛(𝑛+1))/2 are given, respectively, by the product of the 𝑛 first differentials (𝑠 = 0 ) and
the Wronskian (𝑠 = (𝑛 − 1)𝑛/2). The existence of nonzero homogeneous invariant differential operators of order 𝑛 + 𝑠 for 𝑠 <((1+√5)/2)*(𝑛 − 1) is proved.
About the Author
Fyodor Mikhailovich MalyshevRussian Federation
doctor of physical and mathematical sciences
References
1. Arkhipov G.I., Sadovnichy V.A., Chubarikov V.N. 2004, “Lectures on mathematical analysis. 5th edition”, M.: “Bustard” , 640 p.
2. Kirillov A.A. 1980, “Invariant operators over geometric quantities. Results of science and technology”. Vol. 16. M.: VINITI, pp. 3–29.
3. Pontryagin L.S. 1984, “Continuous groups”. 4-th edition, Moscow: Nauka, 520 p.
4. Malyshev F. M. 1980, “Simplicial systems of linear equations. In the book: Algebra”, M.: Publishing House of Moscow State University, pp. 53–56.
5. Kostrikin A.I., Manin Yu.I. 1986, “Linear algebra and geometry”, Moscow: Nauka, 304 p.
6. Buarrudj S. 2009, “Ternary invariant differential operators acting on the space of weighted densities, TMF, 158:2, pp. 165–180.
7. Kirillov A.A. 1977, “On invariant differential operations on geometric quantities”, Function. analysis and its application, Vol. 11, № 2, pp. 39–44.
8. Rudakov A.N. 1974, “Irreducible representations of infinite-dimensional Lie algebras of Cartan type. Izv. AN USSR. Ser. mat., Vol. 38, № 4, pp. 835–866.
9. Veblen O. 1929, “Differential invariants and geometry”, Atti del Congr., Int. Mat., Bologna.
10. Feigin B.L., Fuchs D.B. 1979, “On invariant differential operators on a straight line”, Function. analysis and its application., Vol. 13, № 4, pp. 91–92.
11. Grozman P.Ya. 1980, “Classification of bilinear invariant operators over tensor fields”, Function. analysis and its application., Vol. 14, № 2, pp. 58–59.
12. Bernstein I.N., Leites D.A. 1981, “Invariant differential operators in formal tensor fields”, Serdika, Vol. 11, № . 4, pp. 30–45.
13. Leites D.A. 1982, “Irreducible representations of Lie superalgebras of vector fields and invariant differential operators”, Function. analysis and its application., Vol. 16, № 1, pp. 76–77.
14. Feigin B.L., Fuchs D.B. 1982, “Skew-symmetric invariant differential operators on a straight line and Verma modules over the Virasoro algebra”, Function. analysis and its application., Vol. 16, № 2, pp. 47–63.
15. Tabachnikov S.L. 1982, “On invariant differential operators of general position”, Function. analysis and its application., Vol. 16, № 3, pp. 86–87.
16. Shmelev G.S. 1982, “Irreducible representations of infinite-dimensional Hamiltonian and Poisson Lie superalgebras and invariant differential operators”, Serdika, Vol. 12, № . 1, pp. 11–23.
17. Shmelev G.S. 1983, “Differential 𝐻(2𝑛,𝑚)-invariant operators and indecomposable 𝑜𝑠𝑝(2, 2𝑛)-representations”, Function. analysis and its application., Vol. 17, № 4, pp. 94–95.
18. Shmelev G.S. 1983, “Invariant operators on a symplectic supermanifold”, Mat. Sat. Vol. 120(162), № 4, pp. 528–539.
19. Iohara K., Mathieu O. 2013, “A Global version of Grozman’s theorem”, Math. Zeitschrift, 274:3, pp. 955–992.
20. Bouarroudj S., Leites D.A. 2018, “Invariant differential operators in positive characteristic”, J. Algebra. 499, pp. 281–297.
21. Grozman P. 2022, “Invariant bilinear differential operators”, Communications in Mathematics, 30:3, pp. 129–188.
22. Stanley R. 2005, “Enumerative combinatorics. Trees producing functions and symmetric functions”, Moscow: Mir, 767 p.
23. Arbogast L. F. A. 1800, “Du calcul des d´erivations aux s´ries r´currentes, tant simples que doubles or triples, d’un ordre quelconque”, Strasbourg: Levrault.
24. Fa`a di Bruno F. 1855, “Sullo sviluppo delle funzioni”, Annali di Scienze Matematiche et Fisiche di Tortoloni. 6, pp. 479–480.
25. Fa`a di Bruno F. 1857, “Note sur une nouvelle formule de calcul diff´erentiel”, Quart. J. Math., 1, pp. 359–360.
26. Wenninger M. 1974, “Models of polyhedra”, M.: Mir, 236 p.
Review
For citations:
Malyshev F.M. Invariant differential polynomials. Chebyshevskii Sbornik. 2023;24(4):212-238. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-4-212-238