Preview

Chebyshevskii Sbornik

Advanced search

Invariant differential polynomials

https://doi.org/10.22405/2226-8383-2023-24-4-212-238

Abstract

Based on the method proposed in the article for solving the so-called (𝑟, 𝑠)-systems of linear equations proven that the orders of homogeneous invariant differential operators 𝑛 of smooth real functions of one variable take values from 𝑛 to (𝑛(𝑛+1))/2 , and the dimension of the space of all such operators does not exceed 𝑛!. A classification of invariant differential operators of order 𝑛 + 𝑠 is obtained for 𝑠 = 1, 2, 3, 4, and for 𝑛 = 4 for all orders from 4 to 10. The only, up to factors, homogeneous invariant differential operators of the smallest order 𝑛 and the largest order (𝑛(𝑛+1))/2 are given, respectively, by the product of the 𝑛 first differentials (𝑠 = 0 ) and
the Wronskian (𝑠 = (𝑛 − 1)𝑛/2). The existence of nonzero homogeneous invariant differential operators of order 𝑛 + 𝑠 for 𝑠 <((1+√5)/2)*(𝑛 − 1) is proved.

About the Author

Fyodor Mikhailovich Malyshev
Steklov Mathematical Institute of Russian Academy of Sciences
Russian Federation

doctor of physical and mathematical sciences



References

1. Arkhipov G.I., Sadovnichy V.A., Chubarikov V.N. 2004, “Lectures on mathematical analysis. 5th edition”, M.: “Bustard” , 640 p.

2. Kirillov A.A. 1980, “Invariant operators over geometric quantities. Results of science and technology”. Vol. 16. M.: VINITI, pp. 3–29.

3. Pontryagin L.S. 1984, “Continuous groups”. 4-th edition, Moscow: Nauka, 520 p.

4. Malyshev F. M. 1980, “Simplicial systems of linear equations. In the book: Algebra”, M.: Publishing House of Moscow State University, pp. 53–56.

5. Kostrikin A.I., Manin Yu.I. 1986, “Linear algebra and geometry”, Moscow: Nauka, 304 p.

6. Buarrudj S. 2009, “Ternary invariant differential operators acting on the space of weighted densities, TMF, 158:2, pp. 165–180.

7. Kirillov A.A. 1977, “On invariant differential operations on geometric quantities”, Function. analysis and its application, Vol. 11, № 2, pp. 39–44.

8. Rudakov A.N. 1974, “Irreducible representations of infinite-dimensional Lie algebras of Cartan type. Izv. AN USSR. Ser. mat., Vol. 38, № 4, pp. 835–866.

9. Veblen O. 1929, “Differential invariants and geometry”, Atti del Congr., Int. Mat., Bologna.

10. Feigin B.L., Fuchs D.B. 1979, “On invariant differential operators on a straight line”, Function. analysis and its application., Vol. 13, № 4, pp. 91–92.

11. Grozman P.Ya. 1980, “Classification of bilinear invariant operators over tensor fields”, Function. analysis and its application., Vol. 14, № 2, pp. 58–59.

12. Bernstein I.N., Leites D.A. 1981, “Invariant differential operators in formal tensor fields”, Serdika, Vol. 11, № . 4, pp. 30–45.

13. Leites D.A. 1982, “Irreducible representations of Lie superalgebras of vector fields and invariant differential operators”, Function. analysis and its application., Vol. 16, № 1, pp. 76–77.

14. Feigin B.L., Fuchs D.B. 1982, “Skew-symmetric invariant differential operators on a straight line and Verma modules over the Virasoro algebra”, Function. analysis and its application., Vol. 16, № 2, pp. 47–63.

15. Tabachnikov S.L. 1982, “On invariant differential operators of general position”, Function. analysis and its application., Vol. 16, № 3, pp. 86–87.

16. Shmelev G.S. 1982, “Irreducible representations of infinite-dimensional Hamiltonian and Poisson Lie superalgebras and invariant differential operators”, Serdika, Vol. 12, № . 1, pp. 11–23.

17. Shmelev G.S. 1983, “Differential 𝐻(2𝑛,𝑚)-invariant operators and indecomposable 𝑜𝑠𝑝(2, 2𝑛)-representations”, Function. analysis and its application., Vol. 17, № 4, pp. 94–95.

18. Shmelev G.S. 1983, “Invariant operators on a symplectic supermanifold”, Mat. Sat. Vol. 120(162), № 4, pp. 528–539.

19. Iohara K., Mathieu O. 2013, “A Global version of Grozman’s theorem”, Math. Zeitschrift, 274:3, pp. 955–992.

20. Bouarroudj S., Leites D.A. 2018, “Invariant differential operators in positive characteristic”, J. Algebra. 499, pp. 281–297.

21. Grozman P. 2022, “Invariant bilinear differential operators”, Communications in Mathematics, 30:3, pp. 129–188.

22. Stanley R. 2005, “Enumerative combinatorics. Trees producing functions and symmetric functions”, Moscow: Mir, 767 p.

23. Arbogast L. F. A. 1800, “Du calcul des d´erivations aux s´ries r´currentes, tant simples que doubles or triples, d’un ordre quelconque”, Strasbourg: Levrault.

24. Fa`a di Bruno F. 1855, “Sullo sviluppo delle funzioni”, Annali di Scienze Matematiche et Fisiche di Tortoloni. 6, pp. 479–480.

25. Fa`a di Bruno F. 1857, “Note sur une nouvelle formule de calcul diff´erentiel”, Quart. J. Math., 1, pp. 359–360.

26. Wenninger M. 1974, “Models of polyhedra”, M.: Mir, 236 p.


Review

For citations:


Malyshev F.M. Invariant differential polynomials. Chebyshevskii Sbornik. 2023;24(4):212-238. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-4-212-238

Views: 392


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)