A distribution related to Farey series
https://doi.org/10.22405/2226-8383-2023-24-4-137-190
Abstract
We study some arithmetical properties of Farey fractions by the method introduced by F. Boca, C. Cobeli and A. Zaharescu (2001). Suppose that 𝐷 ⩾ 2 is a fixed integer and denote by Φ𝑄 the classical Farey series of order 𝑄. Now let us colour to the red the fractions in Φ𝑄 with denominators divisible by 𝐷. Consider the gaps in Φ𝑄 with coloured endpoints, that do not contain the fractions 𝑎/𝑞 with 𝐷|𝑞 inside. The question is to find the limit proportions 𝜈(𝑟;𝐷) (as 𝑄 → +∞) of such gaps with precisely 𝑟 fractions inside in the whole set of the gaps under considering (𝑟 = 1, 2, 3, . . .).
In fact, the expression for this proportion can be derived from the general result obtained by C. Cobeli, M. Vˆajˆaitu and A. Zaharescu (2014). However, such formula expresses 𝜈(𝑟;𝐷) in the terms of areas of some polygons related to some geometrical transform of «Farey triangle», that is, the subdomain of unit square defined by 𝑥 + 𝑦 > 1, 0 < 𝑥, 𝑦 ⩽ 1. In the present paper, we obtain the precise formulas for 𝜈(𝑟;𝐷) (in terms of the parameter 𝑟, 𝑟 = 1, 2, 3, . . .) for the cases 𝐷 = 2, 3.
About the Author
Maxim Alexandrovich KorolevRussian Federation
doctor of physical and mathematical sciences, professor of Russian Academy of Sciences
References
1. Cobeli C., Zaharescu A., 2003, “The Haros-Farey sequence at two hundred years. A survey”, Acta Univ. Apulensis Math. Inform., vol. 5. P. 1–38.
2. Haynes A., 2003, “A note on Farey fractions with odd denominators”, J. Number Theory, vol. 98. № 2. P. 89–104.
3. Boca F.P., Cobeli C., Zaharescu A., 2003, “On the distribution of the Farey sequence with odd denominators”, Michigan Math. J., vol. 51. P. 557–573.
4. Cobeli C., Zaharescu A., 2005, “The distribution of rationals in residue classes”, arXiv:math/0511356v1 [math.NT] (14.11.2005).
5. Cobeli C., Zaharescu A., 2006, “On the Farey Fractions with Denominators in Arithmetic Progression”, J. Integer Sequences, vol. 9. Article 06.3.4.
6. Alkan E., Ledoan A.H., Vˆajˆaitu M., Zaharescu A., 2006, “Discrepancy of Fractions with Divisibility Constraints”, Monatsh. Math., vol. 149. P. 179–192.
7. Haynes A., 2009, “The distribution of special subsets of the Farey sequence”, arXiv:math/0907.2171v1 [math.NT] (13.07.2009).
8. Cobeli C., Vˆajˆaitu M., Zaharescu A.,2012, “The distribution of rationals in residue classes”, Math. Reports., vol. 14(64). № 1. P. 1–19.
9. Badziahin D.A., Haynes A.K., 2011, “A note on Farey fractions with denominators in arithmetic progressions”, Acta Arith., vol. 146. № 3. P. 205–215.
10. Boca F.P., Heersink B., Spiegelhalter P. 2013, “Gap distribution of Farey fractions under some divisibility constraints”, arXiv:1301.0277v2 [math.NT] (11.04.2013)
11. Bittua, Chaubeya S., Goela S. 2022, “On the distribution of index of Farey Sequences”, arXiv:2203.16215v1 [math.NT] (30.03.2022)
12. Boca F.P., Siskaki M., 2022, “A note on the pair correlation of Farey fractions”, arXiv:2109.12744v2 [math.NT] (19.09.2022)
13. Boca F.P., Cobeli C., Zaharescu A., 2001, “A conjecture of R. R. Hall on Farey points”, J. reine angew. Math., vol. 535. P. 207–236.
14. Baker A., 1975, Transcendental number theory. London, Cambr. Univ. Press.
15. Lindeman F., 1882, “Ueber die Zahl 𝜋”, Math. Ann., vol. 20. P. 213–225.
16. Ustinov A.V., 2009, “The solution of Arnold’s problem on the weak asymptotics of Frobenius numbers with three arguments”, Sb. Math., vol. 200. № 4. P. 597–627.
17. Graham R.L., Knuth D.E., Patashnik O., 1994, Concrete Mathematics (2nd ed.), Massachusetts, Addison-Wesley.
18. Smirnov E.Yu., 2022, Frieze patterns and continued fractions (in Russian), M., MCCME.
19. Boca F.P., Gologan R., Zaharescu A., 2002, “On the index of Farey sequences”, Quart. J. Math., vol. 53. № 4. P. 377–391.
20. Postnikov A.G., 1988, Introduction to analytic number theory. Transl. Math. Monographs. Vol. 68. AMS, Providence, Rhode Island.
21. Gradstein I.S., Ryjik I.M., 1965, “Tables of Integrals, Sums and Products”, Academic Press, New York.
Review
For citations:
Korolev M.A. A distribution related to Farey series. Chebyshevskii Sbornik. 2023;24(4):137-190. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-4-137-190