On the chromatic number of slices without monochromatic unit arithmetic progressions
https://doi.org/10.22405/2226-8383-2023-24-4-78-84
Abstract
For ℎ, 𝑛 ≥ 1 and 𝑒 > 0 we consider a chromatic number of the spaces R^𝑛×[0, 𝑒]^ℎ and general results in this problem. Also we consider the chromatic number of normed spaces with forbidden monochromatic arithmetic progressions. We show that for any 𝑛 there exists a two-coloring of R^𝑛 such that all long unit arithmetic progressions contain points of both colors and this coloring covers spaces of the form R^𝑛×[0,𝑒]^ℎ.
References
1. Banks W. D., Conflitti A., Shparlinski I. E. 2002, “Character sums over integers with restricted
2. 𝑔-ary digits”, Illinois J. Math.. Vol. 46, № 3. P. 819-836.
3. Bruce L. Bauslaugh. E. 1998, “Tearing a strip off the plan”, Journal of Graph Theory, 29(1),
4. pp. 17-–33.
5. D. Coulson. 2002, “A 15-colouring of 3-space omitting distance one”, Discrete Mathematics, 256,
6. No. 1, pp. 83—90.
7. D. D. Cherkashin, A. J. Kanel-Belov, G. A. Strukov, V. A. Voronov. 2022, “On the chromatic
8. numbers of 3-dimensional slices”.
9. A.D.N.J. de Grey, 2018, “The chromatic number of the plane is at least 5”, Geombinatorics, 28,
10. pp. 18–31.
11. P. Erd˝os, R.L. Graham, P. Montgomery, B.L. Rothschild, J. Spencer, E.G. Straus. 1973,
12. “Euclidean Ramsey theorems I”, J. Combin. Theory Ser. A, 14, № 3, pp. 341–363.
13. P. Erd˝os, R.L. Graham, P. Montgomery, B.L. Rothschild, J. Spencer, E.G. Straus. 1973,
14. “Euclidean Ramsey theorems II”,Colloq. Math. Soc. J. Bolyai, 10, Infinite and Finite Sets,
15. Keszthely, Hungary and North-Holland, Amsterdam, pp. 520–557.
16. P. Erd˝os, R.L. Graham, P. Montgomery, B.L. Rothschild, J. Spencer, E.G. Straus. 1973,
17. “Euclidean Ramsey theorems III”, Colloq. Math. Soc. J. Bolyai, 10, Infinite and Finite Sets,
18. Keszthely, Hungary and North-Holland, Amsterdam, pp. 559–583.
19. G. Exoo, D. Ismailescu. 2020, “The chromatic number of the plane is at least 5: A new
20. proof”,Disc. Comput. Geom., 64, № 1, pp. 216–226.
21. N. Frankl, A. Kupavskii, A. Sagdeev. 2021, “Max-norm Ramsey Theory”. arXiv preprint
22. 08949, .
23. N. Frankl, A. Kupavskii, A. Sagdeev. 2023, “Schmidt–Tuller conjecture on linear packings and
24. coverings”,Proceedings of the American Mathematical Society, Vol. 151, № . 6, pp. 2353–2362.
25. A. Kanel-Belov, V. Voronov, and D. Cherkashin. 2018, “On the chromatic number of an
26. infinitesimal plane layer”, St. Petersburg Mathematical Journal, 29(5), pp. 761—775.
27. Kiran B. Chilakamarri. 1993, “The unit-distance graph problem: a brief survey and some new
28. results”, Bull. Inst. Combin. Appl, 8(39): p. 60.
29. V.Kirova, A.Sagdeev. 2023, “Two-colorings of normed spaces without long monochromatic unit arithmetic progressions”, SIAM Journal on Discrete Mathematics, Vol. 37, Iss. 2.
30. A. Kupavskii, A. Sagdeev. 2021, “All finite sets are Ramsey in the maximum norm”, Forum
31. Math. Sigma, 9, e55, 12 p.
32. D. G. Larman, A. C. Rogers. 1972, “The realization of distances within sets in Euclidean space”, Mathematika, 19, № 01 (1972), pp 1–24.
33. R. Prosanov. 2020, “A new proof of the Larman–Rogers upper bound for the chromatic number of the Euclidean space”, Discrete Appl. Math., 276, pp. 115–120.
34. A.M Raigorodskii. 2000, “On the Chromatic Number of a Space”, Russian Math. Surveys, 55,
35. pp. 351–352.
36. R. Radoicic, G. Toth. 2003, “Note on the chromatic number of the space”, Discrete and
37. Computational Geometry, Algorithms and Combinatorics book series, Vol. 25, Springer, pp.
38. —698.
39. A. Soifer, 2009, “The mathematical coloring book”, Springer-Verlag New York.
40. V. Voronov, A. Kanel-Belov, G.Strukov, D. Cherkashin. 2022, “On the chromatic numbers of
41. -dimensional slices”, Journal of Mathematical Sciences, 518, pp. 94–113.
Review
For citations:
Kirova V.O. On the chromatic number of slices without monochromatic unit arithmetic progressions. Chebyshevskii Sbornik. 2023;24(4):78-84. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-4-78-84