DISTRIBUTION OF THE ZEROS OF LINEAR COMBINATIONS OF L−DIRICHLET FUNCTIONS LYING ON THE CRITICAL LINE
https://doi.org/10.22405/2226-8383-2015-16-3-183-208
Abstract
Some problems of the number theory are associated with the zeros of special functions, such as the Riemann zeta function ζ(s), Dirichlet L-functions L(s, χ) and others. The Riemann zeta function is the most famous. On the half-plane ℜs > 1, the Riemann zeta function is defined by Dirichlet series ζ(s) = ∑ +∞ n=1 n −s . In 1859, Riemann conjectured that all non-trivial zeros of the Riemann zeta function lie on the critical line ℜs = 1 2 . Hardy was the first to prove in 1914 that an infinity of zeros are on the critical line. In 1942, Selberg obtained lower bound of the correct order of magnitude for the number zeros of the Riemann zeta functions on intervals of critical line [T, T + H], H = T 0.5+ε . In 1984, A. A. Karatsuba proved Selberg’s result for shorter intervals of critical line [T, T + H], H = T 27 82 +ε . For arithmetic Dirichlet series satisfying a functional equation of Riemann type but admitting no Euler product expansions, lower bounds of the correct order of magnitude for the number of their zeros on intervals of the critical line ℜs = 1/2 have not been obtained so far. The first to show that the critical line contains abnormally many zeros of an arithmetic Dirichlet series without Euler products was Voronin, who proved in 1980 that interval (0, T] of critical line contains more than cT e 1 20 √ ln ln ln ln T zeros of the Davenport–Heilbronn function. In 1989 A. A. Karatsuba developed a new method for obtaining lower bounds for the number zeros of certain Dirichlet series in intervals of critical line; by using this method, he substantially strengthened Voronin’s result. In 1991 Karatsuba solved (by his 1989 method) the problem of estimating the number zeros of linear combinations of functions which are analogous the Hardy function. In the present paper we prove a theorem similar to the theorem of A. A. Karatsuba (in 1991), but only for "almost all" intervals of the form (T, T + H), H = Xε , where ε is an arbitrary positive number, and X ≤ T ≤ 2X, X > X0(ε).
About the Author
Do Duc TamRussian Federation
References
1. Riemann, B. 1948, “Xachinenia.” [The works],OGIZ, Moskva–Leningrad., 479 p. (Russian)
2. Hardy, G. Н. 1914, “Sur les zeros de la fonction ζ(s) de Riemann”, Compt. Rend. Acad. Sci., vol. 158, pp. 1012–1014.
3. Hardy, G. H. & Littlewood, J. E. 1921. “The zeros of Riemann’s zeta-function on the critical line”, Mathematische Zeitschrift, vol. 10, pp. 283–317.
4. Selberg, A. 1942, “On the zeros of Riemann’s zeta-function”, Skr. Norske. Vid. Akad Oslo, vol. 10, pp. 1–59.
5. Karatsuba, A. A. 1981, “On the distance between consecutive zeros of the Riemann zeta function that lie on the critical line”, Trudy Mat. Inst. Steklov, vol. 157 , pp. 49–63. (Russian)
6. Karatsuba, A. A. 1983, “Osnovui analiticheskoi teorii chisel.” [Fundamentals of analytic number theory], Nauka, Мoscow, 240 p. (Russian)
7. Karatsuba, A. A. 1984, “On the zeros of the function ζ(s) on short intervals of the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., vol 48, no 3, pp. 569–584. (Russian)
8. Karatsuba, A. A. 1984, “The distribution of zeros of the function ζ(1/2 + it)”, Izv. Akad. Nauk SSSR. Ser. Math., vol 48, no 6, pp. 1214–1224. (Russian)
9. Karatsuba, A. A. 1985, “Zeros of the Riemann zeta function on the critical line”, Trudy Mat. Inst. Steklov, vol. 167 , pp. 167–178. (Russian)
10. Karatsuba, A. A. 1985, “On the real zeros of the function ζ(1/2 + it)”, Uspekhi Mat. Nauk, vol. 40, no 4, pp. 171–172. (Russian)
11. Karatsuba, A. A. 1985, “The Riemann zeta function and its zeros”, Uspekhi Mat. Nauk, vol. 40, no 5, pp. 23–82. (Russian)
12. Karatsuba, A. A. 1990, “On the zeros of the Davenport-Heilbronn function lying on the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., vol. 54, no 2, pp. 303– 315. (Russian)
13. Karatsuba, A. A. 1991, “On the zeros of a special type of function connected with Dirichlet series”, Izv. Akad. Nauk SSSR. Ser. Math., vol. 55, no 3, pp. 483–514. (Russian)
14. Karatsuba, A. A. 1992, “On the number of zeros of the Riemann zeta-function lying in almost all short intervals of the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., vol 56, no 2, pp. 372–397. (Russian)
15. Karatsuba, A. A. 1992, “A refinement of theorems on the number of zeros lying on intervals of the critical line of certain Dirichlet series”, Uspekhi Mat. Nauk, vol. 47, no 2, pp. 193–194. (Russian)
16. Voronin, S. M. 1980, “On the zeros of some Dirichlet series lying on the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., vol. 44, no 1, pp. 63–91. (Russian)
17. Voronin, S. V. & Karatsuba, A. A. 1994, “Zeta-funkcia Rimana.” [The Riemann zeta-function], Fizmatlit, Moscow, 376 p. (Russian)
Review
For citations:
Tam D. DISTRIBUTION OF THE ZEROS OF LINEAR COMBINATIONS OF L−DIRICHLET FUNCTIONS LYING ON THE CRITICAL LINE. Chebyshevskii Sbornik. 2015;16(3):183-208. (In Russ.) https://doi.org/10.22405/2226-8383-2015-16-3-183-208