Some tensor invariants of geodesic, potential, and dissipative systems with four degrees of freedom
https://doi.org/10.22405/2226-8383-2023-24-3-190-211
Abstract
The detection of a sufficient number of tensor invariants (and not only the first integrals), as [13, 14, 45] is known, allows integrating a system of differential equations. For example, the presence of an invariant differential form of the phase volume makes it possible to reduce the
number of required first integrals. As you know, this fact is natural for conservative systems.
For systems with attracting or repelling limit sets, not only some first integrals, but also the coefficients of the available invariant differential forms should, generally speaking, include transcendental (i.e. having essentially singular points, in the sense of complex analysis) functions
(see also [1, 23, 24]).
We briefly give examples of frequently occurring tensor invariants. Scalar invariants are the first integrals of the system under consideration. Invariant vector fields are symmetry fields for
a given system (they commute with the vector field of the system under consideration). The phase flows of systems of differential equations generated by these fields translate the solutions of the system in question into solutions of the same system. Invariant external differential forms (which is mainly carried out in this paper) generate integral invariants of the system under consideration. At the same time, the vector field of the system under consideration itself is one of the invariants (a trivial invariant). Knowledge of tensor invariants of the system of differential equations under consideration facilitates both its integration and qualitative research. Our approach consists in the fact that in order to accurately integrate an autonomous system of 𝑛 differential equations, in addition to the mentioned trivial invariant, it is necessary to know 𝑛 − 1 independent tensor invariants.
In this paper, we present tensor invariants (differential forms) for homogeneous dynamical systems on the tangent bundles of smooth four-dimensional manifolds and demonstrate the connection between the availability of these invariants and the existence of a complete set of first integrals, which is necessary for integrating of geodesic, potential, and dissipative systems.
About the Author
Maxim Vladivirovich ShamolinRussian Federation
doctor of physical and mathematical sciences, professor
References
1. Bourbaki N., 1967, “Integration. Measures, measure integration” // Moscow, Nauka.
2. Bourbaki N., 1977, “Integration. Measures on locally compact spaces. Continuation of measures. Measures on separable spaces” // Moscow, Nauka, 1977.
3. Weil G. Symmetries. Moscow, URSS, 2007.
4. Georgievskii D. V., Shamolin M. V., 2001, “Kinematics and mass geometry for a solid body with a fixed point in R𝑛”. Doklady RAN [Physics Doklady], Vol. 380, № 1, pp. 47–50.
5. Georgievskii D. V., Shamolin M. V., 2002, “Generalized Euler’s Equations Describing the Motion of a Rigid Body with a Fixed Point in R𝑛 . Doklady RAN [Physics Doklady], Vol. 383, № 5, pp. 635–637.
6. Georgievskii D. V., Shamolin M. V., 2003, First integrals of motion equations of a generalized gyroscope in R𝑛. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika [Moscow University Mathematics Bulletin], № 5, pp. 37–41.
7. Dubrovin B. A., Novikov S. P., Fomenko A. T., 1979, “Modern Geometry” // Moscow, Nauka.
8. Ivanova T. A., 1992, “Euler equations in models of theoretical physics”. Matematicheskiye zametki [Mathematical Notes], Vol. 52, № 2, pp. 43–51.
9. Kamke E., 1976, “Handbook of Ordinary Differential Equations” // Moscow, Nauka.
10. Klein F., 2017, “Non-Euclidean geometry” // M., URSS.
11. Kozlov V. V., 1983, “Integrability and non-integrability in Hamiltonian mechanics” // Uspekhi matematicheskikh nauk [Russian Mathematical Surveys], Vol. 38, № 1, pp. 3–67.
12. Kozlov V. V., 2015, “Rational integrals of quasi-homogeneous dynamical systems” // Journal of applied mathematics and mechanics, Vol. 79, № 3, pp. 307–316.
13. Kozlov V. V., 2019, “Tensor invariants and integration of differential equations” // Russian Mathematical Surveys, Vol. 74, № 1(445), pp. 117–148.
14. Kolmogorov A. N., 1953, “On dynamical systems with an integral invariant on a torus” // Doklady AN SSSR [Doklady Mathematics], Vol. 93, № 5, pp. 763–766.
15. Pokhodnya N. V., Shamolin M. V., 2012, “A new case of integrability in the dynamics of a multidimensional body” // Vestnik of Samara University. Natural Science Series, № 9(100), pp. 136–150.
16. Pokhodnya N.V., Shamolin M.V. Nekotorye usloviya integriruemosti dinamicheskikh sistem v transtsendentnykh funktsiyakh [Some conditions of integrability of dynamical systems in transcendental functions]. Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya [Vestnik of Samara University. Natural Science Series], 2013, № 9/1(110), pp. 35–41.
17. Pokhodnya N.V., Shamolin M.V. Integriruemye sistemy na kasatel’nom rassloenii k mnogomernoy sfere [Integrable systems on a tangent bundle to a multidimensional sphere]. Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya [Vestnik of Samara University. Natural Science Series], 2014, № 7(118), pp. 60–69.
18. Samsonov V.A., Shamolin M.V. K zadache o dvizhenii tela v soprotivlyayushcheisya srede [On the problem of a body motion in a resisting medium]. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika [Moscow University Mechanics Bulletin], 1989, № 3, pp. 51–54.
19. Trofimov V.V. Euler equations on finite-dimensional solvable Lie groups. Izvestiya AN SSSR. Seriya matematicheskaya [Izvestiya: Mathematics], 1980, Vol. 44, № 5, pp. 1191–1199.
20. Trofimov V.V. Simplekticheskiye struktury na gruppakh avtomorfizmov simmetricheskikh prostranstv [Symplectic structures on automorphism groups of symmetric spaces]. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika [Moscow University Mathematics Bulletin], 1984, № 6, pp. 31–33.
21. Trofimov V.V., Fomenko A.T. Metodika postroeniya gamil’tonovykh potokov na simmetricheskikh prostranstvakh i integriruemost’ nekotorykh gidrodinamicheskikh sistem [The technique of Hamiltonian flows constructing on symmetric spaces and the integrability of some hydrodynamic systems]. Doklady AN SSSR [Doklady Mathematics], 1980, Vol. 254, № 6, pp. 1349–1353.
22. Trofimov V.V., Shamolin M.V. Geometricheskiye i dinamicheskiye invarianty integriruemykh gamil’tonovykh i dissipativnykh sistem [Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems]. Fundamental’naya i prikladnaya matematika [Journal of Mathematical Sciences], 2010, Vol. 16, № 4, pp. 3–229.
23. Shabat B.V. Vvedeniye v kompleksniy analiz [Introduction in Complex Analysis], Moscow, Nauka, 1987.
24. Shamolin M.V. Ob integriruemosti v transtsendentnykh funktsiyakh [On integrability in transcendental functions]. Uspekhi matematicheskikh nauk [Russian mathematical surveys], 1998, Vol. 53, № 3, pp. 209–210.
25. Shamolin M.V. Integriruemost’ po Yakobi v zadache o dvizhenii chetyrekhmernogo tverdogo tela v soprotivlyayushcheisya srede [Integrability according to Jacobi in the Problem of Motion of a Four-Dimensional Solid in a Resistant Medium]. Doklady RAN [Physics Doklady], 2000, Vol. 375, № 3, pp. 343–346.
26. Shamolin M.V. Ob integrirovanii nekotorykh klassov nekonservativnykh sistem [Integration of certain classes of non-conservative systems]. Uspekhi matematicheskikh nauk [Russian mathematical surveys], 2002, Vol. 57, № 1, pp. 169–170.
27. Shamolin M.V. Ob odnom integriruemom sluchae uravneniy dinamiki na so(4) × R4 [An integrable case of dynamical equations on so(4)×R4]. Uspekhi matematicheskikh nauk [Russian mathematical surveys], 2005, Vol. 60, № 6, pp. 233–234.
28. Shamolin M.V. Sluchay polnoy integriruemosti v dinamike na kasatel’nom rassloenii dvumernoy sfery [The case of complete integrability in dynamics on a tangent bundle of a two-dimensional sphere]. Uspekhi matematicheskikh nauk [Russian mathematical surveys], 2007, Vol. 62, № 5, pp. 169–170.
29. Shamolin M.V. Noviy sluchay integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole [New Case of Integrability in the Dynamics of a Multidimensional Solid in a Nonconservative Field]. Doklady RAN [Physics Doklady], 2013, Vol. 453, № 1, pp. 46–49.
30. Shamolin M.V. Noviy sluchay integriruemosti uravenniy dinamiki na kasatel’nom rassloenii k trekhmernoy sfere [New case of integrability of dynamic equations on the tangent bundle of a 3-sphere]. Uspekhi matematicheskikh nauk [Russian mathematical surveys], 2013, Vol. 68, № 5(413), pp. 185–186.
31. Shamolin M.V. Noviy sluchay integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole pri uchete lineynogo dempfirovaniya [A New Case of Integrability in the Dynamics of a Multidimensional Solid in a Nonconservative Field under the Assumption of Linear Damping]. Doklady RAN [Physics Doklady], 2014, Vol. 457, № 5, pp. 542–545.
32. Shamolin M.V. Integriruemye sistemy s peremennoy dissipatsiey na kasatel’nom rassloenii k mnogomernoy sfere i prilozheniya [Integrable variable dissipation systems on the tangent bundle of a multi-dimensional sphere and some applications]. Fundamental’naya i prikladnaya matematika [Journal of Mathematical Sciences], 2015, Vol. 20, № 4, pp. 3–231.
33. Shamolin M.V. Polniy spisok pervykh integralov dinamicheskikh uravneniy dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole [Complete List of First Integrals of Dynamic Equations for a Multidimensional Solid in a Nonconservative Field]. Doklady RAN [Physics Doklady], 2015, Vol. 461, № 5, pp. 533–536.
34. Shamolin M.V. Polniy spisok pervykh integralov dinamicheskikh uravneniy dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole pri nalichii lineynogo dempfirovaniya [Complete List of the First Integrals of Dynamic Equations of a Multidimensional Solid in a Nonconservative Field under the Assumption of Linear Damping]. Doklady RAN [Physics Doklady], 2015. — Т. 464. — № 6. — С. 688–692.
35. Shamolin M.V. Integriruemiye nekonservativniye dinamicheskiye sistemy na kasatel’nom rassloenii k mnogomernoy sfere [Integrable Nonconservative Dynamical Systems on the Tangent Bundle of the Multidimensional Sphere]. Differentsial’niye uravneniya [Differential equations]. 2016, Vol. 52, № 6, pp. 743–759.
36. Shamolin M.V. Noviye sluchai integriruemykh sistem s dissipatsiyey na kasatel’nom rassloenii k mnogomernoy sfere [New Cases of Integrable Systems with Dissipation on a Tangent Bundle of a Multidimensional Sphere]. Doklady RAN [Physics Doklady], 2017, Vol. 474, № 2, pp. 177–181.
37. Shamolin M.V. Integriruemiye dinamicheskie sistemy s konechnym chislom stepeney svobody s dissipatsiyey [Integrable Dynamic Systems with Dissipation and Finitely Many Degrees of Freedom]. Problemy matematicheskogo analiza [Journal of mathematical sciences], 2018, № 95, pp. 79–101.
38. Shamolin M.V. Noviye sluchai integriruemykh sistem s dissipatsiyey na kasatel’nom rassloyenii mnogomernogo mnogoobraziya [New Cases of Integrable Systems with Dissipation on the Tangent Bundle of a Multidimensional Manifold]. Doklady RAN [Physics Doklady], 2018, Vol. 482, № 5, pp. 527–533.
39. Shamolin M.V. Noviye sluchai integriruemykh sistem s dissipatsiyey na kasatel’nom rassloyenii chetyrekhmernogo mnogoobraziya [New Cases of Integrable Systems with Dissipation on Tangent Bundles of Four-Dimensional Manifolds]. Doklady RAN [Physics Doklady], 2018, Vol. 479, № 3, pp. 270–276.
40. Shamolin M.V. Noviye sluchai integriruemykh sistem nechetnogo poryadka s dissipatsiyey [New Cases of Integrable Odd-Order Systems with Dissipation]. Doklady RAN. Matematika, informatika, protsessy upravleniya [Doklady Mathematics], 2020, Vol. 491, № 1, pp. 95–101.
41. Shamolin M.V. Noviye sluchai odnorodnykh integriruemykh sistem s dissipatsiyey na kasatel’nom rassloyenii chetyrekhmernogo mnogoobraziya [New Cases of Homogeneous Integrable Systems with Dissipation on Tangent Bundles of Four-Dimensional Manifolds]. Doklady RAN. Matematika, informatika, protsessy upravleniya [Doklady Mathematics], 2021, Vol. 497, № 1, pp. 23–30.
42. Shamolin M.V. Noviye sluchai integriruemosti geodezicheskikh, potentsial’nykh i dissipativnykh sistem na kasatel’nom rassloenii konechnomernogo mnogoobraziya [New Cases of Integrability of Systems of Geodesics and Potential and Dissipative Systems on Tangent Bundles of Finite-Dimensional Manifolds]. Doklady RAN. Matematika, informatika, protsessy upravleniya [Doklady Mathematics], 2021, Vol. 500, № 1, pp. 78–86.
43. Shamolin M.V. Tenzorniye invarianty geodezicheskikh, potentsial’nykh i dissipativnykh sistem na kasatel’nom rassloenii dvumernogo mnogoobraziya [Tensor Invariants of Geodesic, Potential, and Dissipative Systems on Tangent Bundles of Two-Dimensional Manifolds]. Doklady RAN. Matematika, informatika, protsessy upravleniya [Doklady Mathematics], 2021, Vol. 501, № 1, pp. 89–94.
44. Shamolin M.V. Invariantniye formy obyema sistem s tremya stepenyami svobody s peremennoy dissipatsiyey [Invariant Volume Forms of Variable Dissipation Systems with Three Degrees of Freedom]. Doklady RAN. Matematika, informatika, protsessy upravleniya [Doklady Mathematics], 2022, Vol. 507, № 1, pp. 86–92.
45. Poincar´e H. Calcul des probabilit´es, Gauthier–Villars, Paris, 1912.
46. Shamolin M.V. Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium. Journal of Mathematical Sciences, 2002,Vol. 110, № 2, pp. 2528–2557.
47. Tikhonov A.A., Yakovlev A.B. On dependence of equilibrium characteristics of the space tethered system on environmental parameters. International Journal of Plasma Environmental Science and Technology, Vol. 13, № 1, pp. 49–52.
Review
For citations:
Shamolin M.V. Some tensor invariants of geodesic, potential, and dissipative systems with four degrees of freedom. Chebyshevskii Sbornik. 2023;24(3):190-211. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-3-190-211