Preview

Chebyshevskii Sbornik

Advanced search

Interpolation for a system of concentric grids

https://doi.org/10.22405/2226-8383-2023-24-3-95-121

Abstract

The paper provides an overview of the results of the Tula School of Number Theory on the following issues interpolation of periodic functions of many variables defined in the nodes of a generalized parallelepipedal grid of an integer lattice, and by numerical integration algorithms with a stopping rule.
The necessary facts and notations are given in Section 2, which consists of 6 subsections: 2.1.
From the geometry of numbers; 2.2. Trigonometric sums of grids and lattices; 2.3. Inequalities for
renormalization on the space (𝐸_𝑠)^a ; 2.4. Interpolation formulas for the generalized parallelepipedal grid of an integer lattice; 2.5. Properties of the interpolation operator; 2.6. Estimates of the interpolation error. These subsections, along with the known facts and definitions obtained earlier at the Tula School of Number Theory, contain new concepts and facts related to interpolation on shifted parallelepipedal grids.
The following section 3. Algorithms of approximate integration and interpolation with the stopping rule contains new definitions related to the transfer of the concept of a concentric algorithm of approximate integration to the case of a multiplicative, concentric algorithm of
approximate interpolation.
The paper investigates new issues of approximate interpolation with stopping rules. In the 4th section, the most important and interesting case of nested sequences of parallelepipedal grids is considered for practical implementation. An estimate of the norm of the difference between two interpolation operators on a lattice and a sublattice was obtained, which made it possible to take the maximum of the modulus of the difference of these operators at the points of a larger parallelepipedal grid as the stopping rule of the concentric algorithm for approximate interpolation of periodic functions. In conclusion, the task for further research is formulated.

About the Authors

Alexander Valerievich Rodionov
Tula State Lev Tolstoy Pedagogical University
Russian Federation


Mikhail Nikolaevich Dobrovol’skii
Geophysical Centre of RAS
Russian Federation

candidate of physical and mathematical sciences



Nikolai Nikolaevich Dobrovol’skii
Tula State Lev Tolstoy Pedagogical University
Russian Federation

candidate of physical and mathematical sciences



Nikolai Mihailovich Dobrovol’skii
Tula State Lev Tolstoy Pedagogical University
Russian Federation

doctor of physical and mathematical sciences, professor



References

1. Babenko, K.I. 1986, Osnovy chislennogo analiza [Fundamentals of numerical analysis], Nauka, Moscow, Russia.

2. Bocharova, L.P. 2007, “Algorithms for finding the optimal coefficients”, Chebyshevskij sbornik, vol. 8, no. 1(21), pp. 4–109.

3. Bykovskij, V.А 1988, “Discrete Fourier transform and cyclic convolution on integer lattices”, Matematicheskij sbornik, vol. 136(178), no. 4(8), pp. 451–467.

4. Bykovskij, V.А 2002, “On the error of number-theoretic quadrature formulas”, Chebyshevskij sbornik, vol. 3, no. 2(4), pp. 27–33.

5. O. A. Gorkusha, N. M. Dobrovolsky, 2005, "On estimates of hyperbolic zeta function of

6. lattices" // Chebyshevskii Sbornik, vol. 6, issue 2(14), pp. 130-138.

7. Dobrovol’skaya, L. P., Dobrovol’skii, N. M. & Simonov, А.S. 2008, “On the error of approximate integration over modified grids”, Chebyshevskij sbornik, vol. 9, no. 1(25), pp. 185–223.

8. Dobrovol’skii, M. N. 2004, “The optimum coefficients of the combined meshes”, Chebyshevskij sbornik, vol. 5, no. 1(9), pp. 95–121.

9. Dobrovol’skii, M. N., Dobrovol’skii, N. M. & Kiseleva, O.V. 2002, “On the product of

10. generalized parallelepipedal grids of integer lattices”, Chebyshevskij sbornik, vol. 3, no. 2(4), pp. 43–59.

11. Dobrovol’skii, N. M. 1984, “The hyperbolic Zeta function of lattices”, Dep. v VINITI, no.

12. –84.

13. Dobrovol’skii, N. M. & Bocharova, L.P. 2006, “Fifty years of the number-theoretic method in the approximate analysis”, Naukoemkoe obrazovanie. Traditsii. Innovatsii. Perspektivy, Sbornik mezhvuzovskikh nauchnykh statej, pp.189–198.

14. N. M. Dobrovolsky, A. R. Yesayan, O. V. Andreeva, N. V. Zaitseva, 2004, “Multidimensional number-theoretic Fourier interpolation”, Chebyshevskii sbornik, vol. 5, iss. 1(9), pp. 122–143.

15. Dobrovol’skii, N. M. & Manokhin, E.V. 1998, “Banach spaces of periodic functions”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 4, no. 3, pp. 56–67.

16. Dobrovol’skii, N. M., Manokhin, E.V., Rebrova, I. YU. & Аkkuratova, S.V.1999, “On some properties of normed spaces and algebras of nets”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 5, no. 1, pp. 100–113.

17. N. N. Dobrovol’skii, I. Yu. Rebrova, A. N. Kormacheva, N. M. Dobrovol’skii, 2022, “Deviation estimates for rational grids approximating algebraic”, Chebyshevskii sbornik, vol. 23, no. 4, pp. 178–187.

18. Kassels, D. 1965, Vvedenie v geometriyu chisel, [Introduction to the geometry of numbers], Mir, Moscow, Russia.

19. Korobov, N.M. 1963, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], Fizmat-giz, Moscow, Russia.

20. Korobov, N.M. 2004, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], 2nd ed, MTSNMO, Moscow, Russia.

21. Lokutsievskij, O. V. & Gavrikov, M. B. 1995, Nachala chislennogo analiza [The beginning of numerical analysis], TOO “Yanus”, Moscow, Russia.


Review

For citations:


Rodionov A.V., Dobrovol’skii M.N., Dobrovol’skii N.N., Dobrovol’skii N.M. Interpolation for a system of concentric grids. Chebyshevskii Sbornik. 2023;24(3):95-121. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-3-95-121

Views: 310


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)