Preview

Chebyshevskii Sbornik

Advanced search

Solving the problem of partial hedging through a dual problem

https://doi.org/10.22405/2226-8383-2023-24-3-26-41

Abstract

In this paper we consider the problem of partial hedging studied in [20]. In this problem, the risk of shortfall is estimated using a robust convex loss functional 𝐿(·). In our work, we formulate a dual problem different from the dual problem in [20], we prove the absence of a
duality gap, and also the existence of a solution to the primal and dual problems. In addition, we obtain the results of [20] under weaker assumptions using an approach related to the application of theorems of convex analysis.

About the Author

Sergey Sergeevich Leshchenko
Specialized Educational and Scientific Center – A. N. Kolmogorov boarding School of Lomonosov Moscow State University
Russian Federation


References

1. Attouch H., Br´ezis H. 1986, “Duality for the sum of convex functions in general banach spaces“, Aspects of mathematics and its applications, vol. 34, pp. 125-133.

2. Brannath W., Schachermayer W. 1999, “A Bipolar Theorem for Subsets of 𝐿+ 0 (Ω,ℱ,P)“,

3. S´eminaire de Probabilit´es XXXIII. Lecture Notes in Mathematics, vol. 1709, pp. 349-354.

4. Cheridito P., Li T. 2009, “Risk measures on Orlicz hearts“, Mathematical Finance, vol. 19, no. 2, pp. 189-214.

5. Delbaen F., Schachermayer W. 2006, “The Mathematics of Arbitrage“, Springer, Berlin, Heidelberg, pp. 371.

6. F¨ollmer H., Leukert P. 2000, “Efficient hedging: Cost versus shortfall risk“, Finance & Stochastics, vol. 4, no. 2, pp. 117-146.

7. Gushchin A. A. 2015, “A characterization of maximin tests for two composite hypotheses“, Mathematical Methods of Statistics, vol. 24, no. 2, pp. 110-121.

8. Gushchin A. A., Mordecki E. 2002, “Bounds on option prices for semimartingale market models“, Proceedings of the Steklov Institute of Mathematics, vol. 237, pp. 73-113.

9. Gushchin A. A., Leshchenko S. S. 2020, “Testing hypotheses for measures with different masses: Four optimization problems“, Theory Probab. Math. Stat., vol. 101, pp. 109–117.

10. Hern´andez-Hern´andez D., Trevi˜no-Aguilar E. 2011, “Efficient hedging of European options with robust convex loss functionals: A dual-representation formula“, Mathematical Finance, vol. 21, no. 1, pp. 99-115.

11. Kirch M. 2002, “Efficient Hedging in Incomplete Markets under Model Uncertainty“, PhD thesis, Humboldt Universitat zu Berlin, pp. 144.

12. Kozek A. 1979, “Convex Integral Functionals on Orlicz Spaces“, Annales Societatis Mathematicae Polonae. Series I: Commentationes Mathematicae, vol. 21, pp. 109-135.

13. Nakano Y. 2003, “Minimizing coherent risk measures of shortfall in discrete-time models under cone constraints“, Applied Mathematical Finance, vol. 10, no. 2, pp. 163-181.

14. Nakano Y. 2004, “Efficient hedging with coherent risk measure“, Journal of Mathematical Analysis and Applications, vol. 293, no. 1, pp. 345-354.

15. Nakano Y. 2011, “Partial hedging for defaultable claims“, Advances in Mathematical Economics, vol. 14, pp. 127-145.

16. Rudloff B. 2007, “Convex hedging in incomplete markets“, Applied Mathematical Finance, vol. 14, no. 5, pp. 437-452.

17. Rudloff B. 2009, “Coherent hedging in incomplete markets“, Quantitative Finance, vol. 9, no. 2, pp. 197-206.

18. Rockafellar R. T. 1971, “Integrals which are convex functionals, II“, Pacific J. Math, vol. 39, pp. 439-469.

19. Rockafellar R. T. 1976, “Integral functionals, normal integrands and measurable selections“, Springer, Berlin, Heidelberg, In Nonlinear Operators and the Calculus of Variations. Lecture Notes in Mathematics, vol 543, pp. 157-207.

20. Rockafellar R. T., Wets R. 1998, “Variational analysis“, Springer-Verlag Berlin Heidelberg, pp. 736.

21. Trevi˜no-Aguilar E. 2015, “Duality in a problem of static partial hedging under convex constraints“, SIAM Journal on Financial Mathematics, vol. 6, pp. 1152-1170.

22. Xu M. 2004, “Minimizing shortfall risk using duality approach — an application to partial hedging in incomplete markets“, PhD thesis, Carnegie Mellon University, pp. 93.

23. Xu M. 2006, “Risk Measure Pricing and Hedging in Incomplete Markets“, Ann. Finance, vol. 2, no. 1, pp. 51-71.


Review

For citations:


Leshchenko S.S. Solving the problem of partial hedging through a dual problem. Chebyshevskii Sbornik. 2023;24(3):26-41. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-3-26-41

Views: 321


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)