On an expansion numbers on Fibonacci’s sequences
https://doi.org/10.22405/2226-8383-2023-24-2-248-255
Abstract
In this paper theorems on the expression of real numbers on Fibonacci sequence. It pay a special attention to “explicit formulas” and conditions of the uniqueness of such representations.
We note that unifiing of an expression of a real number over inverse values of a multiplicaticative system permits to get the estimation of the form
$$𝑒 −Σ︁𝑛𝑘=0 1/𝑘!=(𝑥_𝑛)/𝑛!,1/(𝑛 + 1)≤ 𝑥𝑛 <1/𝑛.$$
Expressions of numbers over the sequence of inverse of Fibonacci numbers essentially uses these representation throw powers of “the gold section” 𝜙 = (1+√5)/2 .
About the Authors
Azar GiyasiIslamic Republic of Iran
candidate of physical and mathematical sciences
Ilya Petrovich Mikhailov
Russian Federation
Vladimir Nikolaevich Chubarikov
Russian Federation
doctor of physical and mathematical sciences, professor
References
1. Hardy G. H., Littlewood J. E., 1914, “The fractional part of 𝑛𝑘𝜃”. // Acta math., 37.
2. Borel E., 1909, “Les probabilit´es d´enombarables et leurs applications arithm´etiques”. // Rend Circolo math. Palermo, 27.
3. Gel’fond A. O., 1959, “On one general property of numerical system” // Izv. AN SSSR, Ser. math. (in Russian). 23 (Selected works. p.366-371).
4. Zeckendorf E., 1972, “Repr´sentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas” // Bull. Soc. R. Sci. Li`ege (in French). 41, p. 179-182.
5. Dickson L. E., 1919, “History of the theory of numbers” — Carnegie Inst. of Washigton. Ch.17.
6. Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., 2006, “Lectures on mathematical analysis” — M.: Drofa. Pp. 640.
7. Cassels J. W. S., 1961, “An introduction to Diophantine approximation” — Cambridge University Press. Pp.212.
8. Hall M.,Jr., 1970, “Combinatorial theory” — Waltham (Massachusetts)-Toronto-London: Blaisdell Publ. Comp. Pp. 424.
9. Bernoulli D., 1728, “Combinatorial theory”. // Comment. Acad.Sci. Petrop., 3, p. 85–100.
10. Knuth D. E., 1998, The art computer programming. Fundamental algorithms. Third Ed. — Reading, Massachusetts-Harlow, England-Menlo Park, California-Berkley, california-Lon Mills, Ontario-Sidney-Bonn-Amsterdam-Tokyo-Mexico City: AddisonWesley Longman, Inc.. Pp. 720.
11. de Moivre A., 1922, // Philos. Trans., 32, p. 162–178.
12. ChebyshevP. L., 1936, “The theory of probabilities” — AN SSSR. S23. 143–147. (in Russian).
13. Landau E., 1947, “Fundamentals of analysis”. — M.: Inostr.literature.(in Russian).
14. Golubov B. I., Efimov A. V., Skvortsov V. A., 1987, “Series and the Uolsh’s transformations: the theory and applications”. — M.: Nauka, pp. 344.(in Russian).
15. Mineev M.P., Chubarikov V. N., 2014, “Lectures on arithmetical questions of cryptography”. — M.: OOO“Luch”, pp. 224. (in Russian).
16. Ghyasi А. H., 2007, “A generalization of the Gel’fond theorem concerning number systems” // Russian Journal of Mathematical Physics. 14, № 3, p.370.
Review
For citations:
Giyasi A., Mikhailov I.P., Chubarikov V.N. On an expansion numbers on Fibonacci’s sequences. Chebyshevskii Sbornik. 2023;24(2):248-255. (In Russ.) https://doi.org/10.22405/2226-8383-2023-24-2-248-255