Partially-isospectral Sturm–Liouville boundary value problems on the finite segment
https://doi.org/10.22405/2226-8383-2023-24-1-104-113
Abstract
In paper, an algorithm is proposed for constructing isospectral and partially-isospectral Sturm–Liouville boundary value problems on the finite segment.
References
1. Marchenko, V. A. 1952, “Some problems in the theory of one-dimensional linear differential
2. operators of the second order I ”, Tr. MMO, 1, GITTL, M.-L. 327-420
3. Gelfand, I. M., Levitan B. M. 1951, “On the determination of a differential equation from its
4. spectral function”, Izv. Academy of Sciences of the USSR. Ser. math. 15 :4 , 309-360
5. Levitan, B. M., Sargsyan, I. S. 1988, “Sturm–Liouville and Dirac operators”, Nauka. Moscow.
6. [Kluwer Acad. Publ. Dordrecht (1990).]
7. Isaacson E. L., Trubowitz E. 1983, “The inverse Sturm–Liouville problem I”, Comm. Pure Appl.
8. Math. v. 36, p.767-783.
9. Isaacson E. L., McKean H.P., Trubowitz E. 1984, “The inverse Sturm–Liouville problem II”,
10. Comm. Pure Appl. Math. v. 37, p. 1-11.
11. Dahlberg B. E., Trubowitz E. 1984, “The inverse Sturm–Liouville problem III”, Comm. Pure
12. Appl. Math v.37, p. 255-267.
13. Poschel J., Trubowitz E. 1987, “Inverse spectral theory”, Academic Press. New York.
14. Savchuk,A. M., Shkalikov, A. A. 2008, “On the properties of maps connected with inverse Sturm–
15. Liouville problems”, Trudy MIAN. 260 , 227-247 . [Proc. Steklov Inst. Math. 260 , 218-237
16. (2008).]
17. Yurko, V. A. 2007, “Introduction into the theory of inverse spectral problems”, Fizmatlit.
18. Moscow.
19. Jodeit M., Levitan B. M. 1997, “The isospectrality problem for the classical Sturm–Liouville
20. equation”, Advances in differential equations. v.2, № 2, p. 297-318.
21. Ashrafyan Y. A., Harutyunyan T. N. 2015, “Inverse Sturm–Liouville problems with fixed
22. boundary conditions”, Electronic Journal of differential equations. (2015), v. № 27, p.1-8.
23. Alimov, Sh. A. 1976, “ The work of A. N. Tikhonov on inverse problems for the Sturm–Liouville
24. equation”, UMH. 31:6(192) (1976), 84-88. [Russian Math. Surveys, 31:6 87-92]
25. Ambarzumjan W. A. 1929, “On a Problem of the Theory of Eigenvalues”, Zeitschr, f¨ur Physik.
26. , pp.690-695
27. Mirzaev, O. E., Khasanov A. B. 2020, “On families of isospectral Sturm–Liouville boundary
28. value problems”, Ufa Mathematical Journal. Vol. 12. № . 2 P. 28-34
29. Mirzaev O. E., Murodov F. M. 2020, “Isospectral Sturm–Liouville operators on the finite
30. segment”, SCIENTIFIC JOURNAL Samarkand State University. № 3(121), 50-55.
31. Mirzaev O. E. 2020, “Isospectral Sturm–Liouville operators on the finite segment”, SCIENTIFIC
32. JOURNAL Samarkand State University. № 5(123), 60-64.
33. Namig J. Guliyev. 2020, “Essentially isospectral transformations and their applications”,
34. Annalidi Matematica Pura ed Applicata.( 1923 -) 199:1621–1648. https://doi.org/10.1007/
35. s10231-019-00934-w.
Review
For citations:
Mirzaev O.E. Partially-isospectral Sturm–Liouville boundary value problems on the finite segment. Chebyshevskii Sbornik. 2023;24(1):104-113. https://doi.org/10.22405/2226-8383-2023-24-1-104-113