Preview

Chebyshevskii Sbornik

Advanced search

Partially-isospectral Sturm–Liouville boundary value problems on the finite segment

https://doi.org/10.22405/2226-8383-2023-24-1-104-113

Abstract

In paper, an algorithm is proposed for constructing isospectral and partially-isospectral Sturm–Liouville boundary value problems on the finite segment.

About the Author

Olim Erkinovich Mirzaev
Samarkand State University
Uzbekistan

postgraduate student



References

1. Marchenko, V. A. 1952, “Some problems in the theory of one-dimensional linear differential

2. operators of the second order I ”, Tr. MMO, 1, GITTL, M.-L. 327-420

3. Gelfand, I. M., Levitan B. M. 1951, “On the determination of a differential equation from its

4. spectral function”, Izv. Academy of Sciences of the USSR. Ser. math. 15 :4 , 309-360

5. Levitan, B. M., Sargsyan, I. S. 1988, “Sturm–Liouville and Dirac operators”, Nauka. Moscow.

6. [Kluwer Acad. Publ. Dordrecht (1990).]

7. Isaacson E. L., Trubowitz E. 1983, “The inverse Sturm–Liouville problem I”, Comm. Pure Appl.

8. Math. v. 36, p.767-783.

9. Isaacson E. L., McKean H.P., Trubowitz E. 1984, “The inverse Sturm–Liouville problem II”,

10. Comm. Pure Appl. Math. v. 37, p. 1-11.

11. Dahlberg B. E., Trubowitz E. 1984, “The inverse Sturm–Liouville problem III”, Comm. Pure

12. Appl. Math v.37, p. 255-267.

13. Poschel J., Trubowitz E. 1987, “Inverse spectral theory”, Academic Press. New York.

14. Savchuk,A. M., Shkalikov, A. A. 2008, “On the properties of maps connected with inverse Sturm–

15. Liouville problems”, Trudy MIAN. 260 , 227-247 . [Proc. Steklov Inst. Math. 260 , 218-237

16. (2008).]

17. Yurko, V. A. 2007, “Introduction into the theory of inverse spectral problems”, Fizmatlit.

18. Moscow.

19. Jodeit M., Levitan B. M. 1997, “The isospectrality problem for the classical Sturm–Liouville

20. equation”, Advances in differential equations. v.2, № 2, p. 297-318.

21. Ashrafyan Y. A., Harutyunyan T. N. 2015, “Inverse Sturm–Liouville problems with fixed

22. boundary conditions”, Electronic Journal of differential equations. (2015), v. № 27, p.1-8.

23. Alimov, Sh. A. 1976, “ The work of A. N. Tikhonov on inverse problems for the Sturm–Liouville

24. equation”, UMH. 31:6(192) (1976), 84-88. [Russian Math. Surveys, 31:6 87-92]

25. Ambarzumjan W. A. 1929, “On a Problem of the Theory of Eigenvalues”, Zeitschr, f¨ur Physik.

26. , pp.690-695

27. Mirzaev, O. E., Khasanov A. B. 2020, “On families of isospectral Sturm–Liouville boundary

28. value problems”, Ufa Mathematical Journal. Vol. 12. № . 2 P. 28-34

29. Mirzaev O. E., Murodov F. M. 2020, “Isospectral Sturm–Liouville operators on the finite

30. segment”, SCIENTIFIC JOURNAL Samarkand State University. № 3(121), 50-55.

31. Mirzaev O. E. 2020, “Isospectral Sturm–Liouville operators on the finite segment”, SCIENTIFIC

32. JOURNAL Samarkand State University. № 5(123), 60-64.

33. Namig J. Guliyev. 2020, “Essentially isospectral transformations and their applications”,

34. Annalidi Matematica Pura ed Applicata.( 1923 -) 199:1621–1648. https://doi.org/10.1007/

35. s10231-019-00934-w.


Review

For citations:


Mirzaev O.E. Partially-isospectral Sturm–Liouville boundary value problems on the finite segment. Chebyshevskii Sbornik. 2023;24(1):104-113. https://doi.org/10.22405/2226-8383-2023-24-1-104-113

Views: 471


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)