Application of number-theoretic grids in problems of sound diffraction by elastic bodies
https://doi.org/10.22405/2226-8383-2022-23-5-206-226
Abstract
The article considers the problem of a plane harmonic sound wave diffraction by an elastic ellipsoid. To represent the scattered field, a representation in the form of a Kirchhoff integral is used. This leads to the need to solve the Fredholm integral equation of the second kind to determine the displacement potential in the scattered wave on the surface of the scatterer. It
is shown that the use of quadrature formulas based on number-theoretic grids allows you to reduce the number of calculations for the approximate calculation of integrals, when solving the integral equation and when calculating the scattered acoustic pressure in near field. This method is compared with the calculation of integrals by the simple cell method, which has the
same order of accuracy. The time of solving the problem is compared with the calculation of pressure in the vicinity of the ellipsoid based on the solution of an integral equation by two methods for calculating integrals.
About the Authors
Nikolai Nikolaevich Dobrovol’skiiRussian Federation
candidate of physical and mathematical sciences
Sergey Alekseevich Skobel’tsyn
Russian Federation
doctor of physical and mathematical sciences
Lev Alekseevich Tolokonnikov
Russian Federation
doctor of physical and mathematical sciences, professor
Nikolai Vladimirovich Larin
Russian Federation
candidate of physical and mathematical sciences
References
1. D. Colton and R. Kress, 1983, Integral Equation Methods in Scattering Theory, New York,
2. Wiley-Interscience.
3. S. Kirkup, 2019, “The Boundary Element Method in Acoustics: A Survey”, Appl. Sci., vol. 9.
4.
5. S. M. Rao, 2011, “An iterative method to solve acoustic scattering problems using a boundary
6. integral equation”, J. Acoust. Soc. Am. vol. 130, issue 4, pp. 1792–1798.
7. J. A. Fawcett, 2014, “Scattering from a finite cylinder near an interface”, J. Acoust. Soc. Am.
8. vol. 136, issue 2, pp. 485–493.
9. A. M. A. Alsnayyan, J. Li, S. Hughey, A. Diaz and B. Shanker, 2020, “Efficient isogeometric
10. boundary element method for analysis of acoustic scattering from rigid bodies”, J. Acoust. Soc.
11. Am. vol. 147, issue 5, pp. 3275–3284.
12. C. A. Brebbia, J. C. F. Telles and L. C. Wrobel, 1984 Boundary Element Techniques. Theory
13. and Applications in Engineering, Berlin, Springer-Verlag.
14. E. L. Shenderov, 1989, Sound emission and scattering, [Izluchenie i rasseianie zvuka],
15. Leningrad, Shipbuilding.
16. N. N. Dobrovol‘skii, S. A. Skobel‘tsyn, L. A. Tolokonnikov and N. V. Larin, 2021, “About
17. application of number-theoretic grids in problems of acoustics”, Chebyshevskii sbornik, vol. 22,
18. no. 3, pp. 368–382.
19. N. N. Dobrovol‘skii, S. A. Skobel‘tsyn, L. A. Tolokonnikov, N. V. Larin, 2021, "About
20. application of number-theoretic grids in problems of acoustics" , Chebyshevskii sbornik, vol.
21. , no. 3, pp. 368–382.
22. I. Yu. Rebrova, V. N. Chubarikov, N. N. Dobrovol’skii, M. N. Dobrovol’skii, N. M. Dobrovol’skii,
23. , “On classical number-theoretic nets”, Chebyshevskii sbornik, vol. 19, no. 4, pp. 118—176.
24. N. M. Korobov, 1961, “Application of number-theoretical sieves to integral equations and
25. interpolation formulas”, Collection of articles. To the 60th anniversary of academician Mikhail
26. Alekseevich Lavrent’ev, Trudy Mat. Inst. Steklov., vol. 60, pp. 195—210.
27. Yu. N. Shakhov, 1961, “The approximate solution of Volterra equations of the second kind by
28. the method of iterations”, Dokl. Akad. Nauk SSSR, vol. 136, issue 6, pp. 1302–1305.
29. M. Z. Gecmen and E. Celik, 2021, “Numerical solution of Volterra–Fredholm integral equations
30. with Hosoya polynomials”, Math Meth Appl Sci., vol. 44, pp. 11166–11173.
31. W. Shatanawi, N. Mlaiki, D. Rizk, et al., 2021, “Fredholm-type integral equation in controlled
32. metric-like spaces”, Adv Differ Equ, 358 (2021).
33. S. C. Buranay, M. A. Ozarslan and S. S. Falahhesar, 2021, “Numerical Solution of the Fredholm
34. and Volterra Integral Equations by Using Modified Bernstein–Kantorovich Operators”, Mathematics,
35. , 1193.
36. V. A. Bykovskii, 1988, “Discrete Fourier transform and cyclic convolution on integral lattices”,
37. Dokl. Akad. Nauk SSSR, 302:1, pp. 11–13.
38. Yu. Kolomoitsev and J. Prestin, 2021, “Approximation properties of periodic multivariate quasiinterpolation
39. operators”, Journal of Approximation Theory, vol. 270, 105631.
40. S. C. Buranay, M. A. Ozarslan and S. S. Falahhesar, 2021, “Numerical Solution of the Fredholm
41. and Volterra Integral Equations by Using Modified Bernstein–Kantorovich Operators”,
42. Mathematics, vol. 9, 1193.
43. N. N. Dobrovol’skii, 2007, “Discrepancy of two-dimensional Smolyak grids”, Chebyshevskii
44. sbornik, vol. 8, no. 1, pp. 110—152.
45. N. M. Korobov, 2004, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic
46. methods in approximate analysis], 2nd ed., MTSNMO, Moscow, Russia.
47. N. M. Dobrovol’skii, A. R. Yesayan, O. V. Andreeva and N. V. Zaitseva, 2004, “Multidimensional
48. number-theoretic Fourier interpolation” [Mnogomernaya teoretiko-chislovaya Fur’e
49. interpolyaciya], Chebyshevskii sbornik, vol 5, no 1, pp. 122—143
50. M. A. Isakovich, 1973, General acoustics [Obshchaya akustika], Moscow, Nauka.
51. W. Nowacki, 1963, Dynamics of elastic systems, New York, Wiley.
52. E. J. Skudryzk, 1971, The Foundations Acoustic, New York, Springer-Verlag.
53. N. N. Kalitkin, 1978, Numerical methods [Chislennye metody], Moscow, Nauka.
54. P. M. Morse and H. Feshbach, 1953, Methods of Mathematical Physics, New York, McGraw-Hill.
55. P. K. Banerjee and R. Butterfield, 1981, Boundary element methods in engineering science,
56. New York, McGraw-Hill.
57. V. D. Kupradze, 1965, Potential Methods in the Theory of Elasticity, Israel Program for
58. Scientific Translations.
59. G. A. Corn and T. M. Corn, 2000, Mathematical Handbook for Scientists and Engineers, New
60. York, Dover Publications.
61. N. M. Korobov, 1959, “Calculation of multiple integrals by the method of optimal coefficients”
62. [Vychislenie kratnyh integralov metodom optimalnyh koeffitcientov], Vestn. Moscow university,
63. no. 4, pp. 19-25.
64. J. J. Faran, 1951, “Sound scattering by solid cylinders and spheres”, J. Acoust. Soc. Amer.,
65. vol. 23, no.4, pp. 405–418.
66. L. Flax, G. C. Gaunaurd and H. ¨Uberall, 1981, “Theory of resonance scattering”, Physical
67. Acoustics, edited by Mason W.P. and Thurson R.N., New York, Academic, vol. 15, pp. 191–
68.
Review
For citations:
Dobrovol’skii N.N., Skobel’tsyn S.A., Tolokonnikov L.A., Larin N.V. Application of number-theoretic grids in problems of sound diffraction by elastic bodies. Chebyshevskii Sbornik. 2022;23(5):206-226. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-5-206-226