Preview

Chebyshevskii Sbornik

Advanced search

Development of the conceptual provisions of the qualitative theory

https://doi.org/10.22405/2226-8383-2022-23-5-269-290

Abstract

The work is devoted to the study of the evolution of the main provisions of the qualitative theory, under the sign of which the development of all mathematics of the twentieth century took place. In the development of qualitative theory there are several stages with clearly defined trends: the formation of a qualitative theory, when new approaches, a new language and a system of concepts were formed (late 19th – 20s of the 20th century); the next stage is the widespread use of methods of topology and functional analysis, probabilistic representations and the expansion of qualitative theory with the allocation of independent areas (late 1920s – mid-twentieth
century); from the middle of the twentieth century to the present – the modern stage. It is distinguished by the fact that the idea of mathematics as a single science was embodied in the qualitative theory. Qualitative theory has absorbed the ideas and methods of various branches (topology, functional analysis, the theory of Lie groups, etc.). The unifying role of a qualitative theory is that it embodies two cultures in mathematics, one of them is aimed at solving problems, and the other – at building and comprehending theories. In this respect, qualitative theory is not just a specific branch, but a peculiar approach to mathematical problems. A feature of the present stage is the still unprecedented convergence with the field of applications, especially with physics. Physics is not just a consumer, it has stimulated fundamental changes in mathematics itself. It becomes difficult to draw a distinguishable boundary between some branches of mathematics and theoretical physics. Qualitative theory has transformed the face of all mathematics and its applications.

About the Author

Ravil’ Rafkatovich Mukhin
Ugarov Stary Oskol Technological Institute (branch) National University of Science and Technology «MISiS»
Russian Federation

doctor of physical and mathematical sciences



References

1. Sturm Ch. F. M´emoire sur une classe ´equations `a diff´erences partielles // J. Math. Pures et

2. Appl. 1836.V. 1. Pp. 373–444.

3. Demidov S. S., Petrova S. S., Simonov N. N. Ordinary differential equations // Mathematics of

4. XIX century. M .: Nauka, 1987. Pp. 80–183 (in Russian).

5. Poincar´e H. Memoire sur les courbes d´efinies par une ´equations differentielle // J. math. pures

6. et appl. S´er. 3. 1881. V. 7. Pp. 375–422; 1882. V. 8. Pp. 251–296; S´er. 4. 1885. V. 1. Pp. 167–244;

7. V. 2. Pp. 151–217

8. Lyapunov A. M. The general problem of the stability of motion // Lyapunov A.M. Select. works:

9. works on the stability of motion. Moscow: Nauka, 2007. Pp. 27–298 (in Russian).

10. Iurato G. The dawning of the theory of equilibrium figures // archive: 1409.1823.

11. Jacobi C. G. ¨Uber die Figur des Gleichgewichts // Ann. Phys. Chem. 1834. Bd. 33. S. 229–233;

12. Gesammelte Werke. V. 2. Berlin : Verlag von G. Reimer, 1882–1891. S. 17–22.

13. Poincar´e H. Sur l’´equilibre d’un masse fluide anim´ee d’un mouvement de rotation // Acta Math.

14. T. 7. Pp. 259–380 ; Oeuvres de Henri Poincar´e. T. VII. Paris: Gautier-Villars, 1952. Pp.

15. –140.

16. Bogatov E. M., Mukhin1 R. R. On the development of nonlinear integral equations at the early

17. stage and the contribution of domestic mathematics // Chebyshevskii sbornik, V. 22. N 3. Pp.

18. –345 (in Russian).

19. Leibniz W. G. Selected passages from mathematical writings // Russian Mat. Survey. 1948. V.

20. Issue 1 (23). Pp. 165–204 (in Russian).

21. Riemann B. Theorie der Abel’schen Functionen // Bernhard Riemann’s Gesammelte Mathematische

22. Werke und Wissenschaftlicher Nachlass. 1892. S. 88–144.

23. Klein F. A Comparative Review of Recent Researchers in Geometry // Bull. New York Math.

24. Soc. 1893. V. 2. N 10. Pp. 215–240.

25. Euler L. Elementa doctrinae solidorum (1758) // Euler Archive. 230. Pp. 109–141.

26. Betti E. Sopra gli spazi di un numero qualunque di dimensioni // Ann. Math. Pura Appl. 1870.

27. V. 2/4. Pp. 140–158.

28. Jordan C. Sur la deformation des surfaces // J. Math. Pures et Appl. 1866. II s´er. T. 11. Pp.

29. –5.

30. Jordan C. Course d’Analyse. V. III. Paris, 1867. Pp. 587–594.

31. Poincar´e H. Analysis situs // J. Ecole Polytechniques. II s´er. 1895. Cahier 1. Pр. 1–121.

32. Medvedev F.A. Founders of functional analysis // Histor.-mat. Research. 1973. V. XVIII. Pp.

33. –70 (in Russian).

34. Frech´et M. G´en´eralisation d’un th´eor`eme de Weierstrass // Comp. Ren. Acad. Sci. 1904. V.

35. Pp. 848–850.

36. Frech´et M. Sur la quelques points du Calcul fonctionel // Rend. Circ. Math. Palermo. 1906. V.

37. Pp. 1–74.

38. Hilbert D. Grundz¨uge einer allgemeinen Theorie der loinearen Integralgleichungen III // Nachr.

39. Ges. Wiss. G¨ottingen. 1905. S. 307–338.

40. Banach S. Sur les op´erations dans les ensembles abstraits et leur applications aux ´equations

41. int´egrales // Fund. Math. 1923. T. 3. Pp. 123–181.

42. Banach S. Th´eorie des op´ertaions lin´eaires. Warrzawa, 1932. 259 p.

43. Brouwer L. E. J. ¨Uber ein eindeutige, stetige Transformationen von Fl¨achen in sich // J. Math.

44. Ann. 1910. Bd. 69. S. 176–180.

45. Schauder J. Zur Theorie stetiger Abbildungen in Funktionalr¨aumen // Math. Zeitschr. 1927.

46. Bd. 26. S. 47–65, 417–431.

47. Schauder J. ¨Uber lineare, vollstetige Operationen // Studia. Math. 1930. Bd. 2. S. 183–196.

48. Leray J., Schauder J. Topologie et ´equations fonctionelles // Ann. Ec. Norm. Sup. 1934. V. 3

49. (51). Pp. 43–78.

50. Bernoulli J. Ars Conjectandi. Basileae: Impensis Thurnisiorum, Fratrum, 1713. 358 p.

51. Kolmogorov A. N. General measure theory and probability calculus // Kommun. Academy, Sat.

52. works of math. sec. 1929. V. 1. Pp. 8–21 (in Russian).

53. Kolmogorov A. N. Grundbegriffe der Wahrscheinlichkeitsrehung. Berlin: Springer-Verl., 1933.

54. S.

55. Birkhoff G. D. Dynamical Systems. Providence, Rhod Island: AMS, 1927. IX + 295 P.

56. Poincar´e H. Les m´ethodes nouvelles de la m´ecanique c´eleste. Paris: Gauthier-Villars T. 1. 1892.

57. p; T. 2. 1893. 476 P.

58. Hopf E. Ergodentheorie. Berlin: Springer-Verl. 1937. IV + 835 S.

59. Neumann J. von. Proof of the quasi-ergodic hypothesis // Proc. Nat. Acad. Sci. Amer. 1932.

60. V. 18. Pр. 70–82.

61. Birkhoff G. D. Proof of recurrence theorem for strongly transitive systems and proof of the

62. ergodic theorem // Proc. Nat. Acad. Sci. Amer. 1931. V. 17. Pр. 650–660.

63. Kryloff N., Bogoliouboff N. La th´eorie g´en´erale de la mesure dans son applications a l’´etude des

64. syst`eme dynamiques de la m´ecanique non lineaire // Ann. Math. 1937. V. 38. Pр. 65–113.

65. Gibbs J. W. Elementary principles in statistical mechanics. N.Y.: C. Schribner, 1902. 207 p.

66. Zaslavsky G. M. Stochasticity of dynamical systems. M.: Nauka, 1984. 272 p. (in Russian).

67. Rokhlin V. A. A generalization of a measure-preserving transformation that is not a mixing //

68. Rep. Acad. Sci. USSR. 1949. T. 13. Pp. 329–340 (in Russian).

69. Kolmogorov A. N. A new metric invariant of transitive dynamical systems and automorphisms

70. of Lebesgue spaces // Rep. Acad. Sci. USSR. 1958. № 5. Pр. 861–864 (in Russian).

71. Kolmogorov A. N. On entropy per unit time as a metric invariant of automorphisms // Rep.

72. Acad. Sci. USSR. 1959. Т. 124. № 4. Рр. 754–755 (in Russian).

73. Sinai Ya. G. Written communication on 26.03.2007.

74. Sinai Ya. G. On the concept of the entropy of dynamical systems // Rep. Acad. Sci. USSR.

75. T. 124. № 4. Pр. 768–771 (in Russian).

76. Pesin Ya. B. Characteristic Lyapunov exponents and smooth ergodic theory // Russian Mat.

77. Survey. 1977. T. 32. V. 4. Pp. 55–112 (in Russian).

78. Kolmogorov A. N. General theory of dynamical systems and classical mechanics // Selected

79. works of A.N. Kolmogorov. V. 1. Dordrecht: Kluwer Acad. Publ., 1991. Pp. 355–375.

80. Moser J. A new technique for the construction of solutions of nonlinear differential equations

81. // Proc. Nat. Acad. Sci. USA. 1961. V. 47. Pр. 1824–1831.

82. Arnold V. I. Proof of A. N. Kolmogorov’s theorem on the conservation of conditionally periodic

83. motions with a small change in the Hamilton function // Russian Mat. Survey. 1963. T. 18. V.

84. Рр. 13–40 (in Russian).

85. Anosov D. V. On the development of the theory of dynamical systems over the last quarter of

86. a century // Student readings of the MK IMU. Issue. 1. M.: MTsNMO, 2000. Pp. 74–192 (in

87. Russian).

88. Anosov D. V. Dynamical Systems in the 1960s: The Hyperbolic Revolution // Mathematical

89. events of the twentieth century. Springer, 2006. Pp. 1–17.

90. Yoccoz J.-C. Recent developments in Dynamics // Proc. Int. Congress Mathematicians, V. 1,

91. Zurich: Birkhauser, 1995. Pр. 246–265.

92. Bour J. Sur l’integration des ´equations diff´erentielles de la M´ecanique Analytic // J. Math.

93. Pure et Appl. 1855. V. 20. Pр. 185–200.

94. Liouville J. Remarques nouvelles sur l’´equation de Riccati // J. Math. Pures et Appl. 1841.

95. Pр. 1–13, 36.

96. Liouville J. Note `a l’occasion du memoire pr´ecident de M. Edmond Bour // J. Math. Pure et

97. Appl. 1855. V. 20. Pр. 201–202.

98. Kozlov V. V. Integrability and non-integrability in Hamiltonian mechanics // Russian Mat.

99. Survey. 1983. T. 38. V. 1. Pp. 3–67 (in Russian).

100. Kozlov V. V. Symmetry, topology and resonances in Hamiltonian mechanics. Izhevsk: Udmurt

101. Univ. Publ. House, 1995. 430 p. (in Russian).

102. Fermi E. Beweis dass ein Mechnisches Normalsystem in Allgemeinen Quasi-ergodisch ist //

103. Phys. Zs. 1923. B. 24. S. 261–265.

104. Fermi E., Pasta J., Ulam S. Study of Nonlinear Problems // Studies of Nonlinear Problems. I.

105. Los Alamos Report. LA, 1940. 1955.

106. Zabusky N. J., Kruskal M.D. Interaction of solitons in a collisionless plasma and the recurrence

107. of initial states // Phys. Rev. Lett. 1965. V. 15. Pp. 240–243.

108. Solitons. M.: Mir, 1983. 408 p. (in Russian).

109. Gelfand I. M. On elliptic equations // Russian Mat. Survey. 1960. T. 15. V. 3 (93). Pp. 121–132.

110. (in Russian).

111. Shvartz A. S. Quantum field theory and topology. M.: Nauka, 1989. 400 p. (in Russian).

112. Atiyah M., Singer I. M. The index of elliptic operators on compact manifolds // Bull. AMS.

113. V. 69. N 3. Pp. 422–433.

114. Alvarez-Gaume L. Supersymmetry and the Atiyah-Singer Index Theorem // Comm. Math.

115. Phys. 1983. V. 90. Pp. 161–173.

116. Monastyrsky M. I. Modern Mathematics in the Reflection of the Fields Medals. M.: Janus-K,

117. 200 p. (in Russian).

118. Singer I. M. Future extensions of index theory and elliptic operators // Prosp. Math. Ann.

119. Math. Soc. 1971. N 70. Pp. 171–185.

120. Atiyah M. The Dirac equation and geometry // Paul Dirac. The Man and hisWork. Cambridge:

121. CUP, 1998. Pp. 108–124.

122. Atiyah and Singer Receive 2004 Abel Prize // Notices AMS. 2004. V. 51. N 6. Pp. 649–650.

123. Donaldson S. Self-dual connections and the topology of smooth 4-manifolds // Bull. AMS.

124. V. 8. Pp. 81–83.

125. Donaldson S., Kronheimer P. The Geometry of Four- Manifolds. Oxford: OUP, 1990. 440 p.

126. Bourbaki N. Essays on the history of mathematics. M.: Foreign Literature Publ House, 1963.

127. p. (in Russian).

128. Atiyah M. Trends in Pure Mathematics // Proc. 3rd Int. Congr. In Math. Education. 1977.

129. Pp. 61–74.

130. Prigogine I. From being to becoming : time and complexity in the physical sciences. San

131. Francisco : W. H. Freeman, 1980. 262 p.

132. Lotman Yu. M. Semiosphere. St. Petersburg: Art-SPB, 2000. 704 p. (in Russian).


Review

For citations:


Mukhin R.R. Development of the conceptual provisions of the qualitative theory. Chebyshevskii Sbornik. 2022;23(5):269-290. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-5-269-290

Views: 270


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)