Preview

Chebyshevskii Sbornik

Advanced search

On simultaneous approximations to the logarithms of primes

https://doi.org/10.22405/2226-8383-2022-23-5-87-100

Abstract

In the first part of the paper, a modification of elementary Titchmarsh’s method is applied to the proof of the local Kronecker’s theorem. For any finite real sequence ¯𝜆= (𝜆1, . . . , 𝜆𝑟) of linearly independent (over Q) numbers and for any 𝜀 > 0, this method leads to the explicit upper bound of the value ℎ = ℎ(𝜀,¯𝜆) with the following property: for any real sequence ¯𝛼 = (𝛼1, . . . , 𝛼𝑟), any interval of the length ℎ contains a point 𝑡 such that ‖𝑡𝜆𝑠 − 𝛼𝑠‖ <= 𝜀, 1 <= 𝑠 <= 𝑟. Such estimate is weaker than the best known, but it’s proof is quite simple and leads
to the same (in essence) results in the applications.
The second part contains the short memoirs concerning the academician Alexey Nikolaevich
Parshin who passed away on June, 18 this year.

About the Authors

Maxim Aleksandrovich Korolev
Steklov Mathematical Institute of Russian Academy of Sciences
Russian Federation

doctor of physical and mathematical sciences



Irina Sergeevna Rezvyakova
Steklov Mathematical Institute of Russian Academy of Sciences
Russian Federation

candidate of physical and mathematical sciences



References

1. Kronecker L. 1884, “N¨aherungsweise ganzzahlige Aufl¨osung linearer Gleichungen”, Monats.

2. K¨onigl. Preuss. Akad. Wiss. Berlin. S. 1179-1193, 1271-1299.

3. Hensel K. (ed.) 1899, Leopold Kronecker’s Werke, Vol. III, Teubner, Leipzig.

4. Hardy G. H., Wright E. M. 1975, An introduction to the theory of numbers (4th ed.). Clarendon

5. Press, Oxford.

6. Tur´an P. 1960, “A theorem on diophantine approximation with application to Riemann zetafunction”,

7. Acta Sci. Math. (Szeged)., vol. 21. P. 311-318.

8. Gonek S. M., Montgomery H. L. 2016, “Kronecker’s approximation theorem”, Indag. Math.

9. (N.S.), vol. 27, № 2. P. 506–523.

10. Titchmarsh E. C. 1986, The Theory of the Riemann Zeta-function. 2nd ed. (revised by

11. D.R. Heath-Brown). Clarendon Press, Oxford.

12. Bohr H. 1934, “Again the Kronecker Theorem”, J. Lond. Math. Soc., vol. 9. P. 5–6.

13. Konyagin S. V., Korolev M. A. 2022, “On the Titchmarsh’s phenomenon in the theory of

14. the Riemann zeta-function”, Approximation Theory, Functional Analysis, and Applications,

15. Collected papers. On the occasion of the 70th birthday of Academician Boris Sergeevich Kashin,

16. Trudy Mat. Inst. Steklova, 318, Steklov Math. Inst., Moscow. P. 182-201.

17. Besikovitch A. S. 1940, “On the linear independence of fractional powers of integers”, J. London

18. Math. Soc., vol. 15. P. 3-6.

19. Chandrasekharan K. 1970, Arithmetical Functions. Springer-Verlag, Berlin.

20. Selberg A., “On the remainder term in the lattice point problem of the circle”. Manuscript.

21. http://publications.ias.edu/selberg/section/2494

22. Heath-Brown D. R. 1992, “The distribution and moments of the error term in the Dirichlet

23. divisor problem”, Acta Arith., vol. 60, № 4. P. 389-415.

24. Korolev M. A., Popov D. A. 2022, “On Jutila’s integral in the circle problem”, Izv. Math., vol.

25. , № 3. P. 413-455.

26. Buhshtab A. A. 1960, Number Theory (in Russian). Uchpedgiz, Moscow.

27. Mordell L. J. 1953, “On the linear independence of algebraic numbers”, Pacific J. Math., vol. 3,

28. № 3. P. 625-630.

29. Hua L.-K. 1959, Absch¨atzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie.

30. Teubner-Verlag., Leipzig.


Review

For citations:


Korolev M.A., Rezvyakova I.S. On simultaneous approximations to the logarithms of primes. Chebyshevskii Sbornik. 2022;23(5):87-100. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-5-87-100

Views: 307


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)