Preview

Chebyshevskii Sbornik

Advanced search

On critical lattices of the unit sphere

https://doi.org/10.22405/2226-8383-2022-23-5-20-37

Abstract

The history of the problem of calculating and estimating the Hermite constant has two centuries. This article provides a brief overview of the history of this problem. Also, this problem is considered from the point of view of critical lattices of the unit sphere.
This problem begans from the works of J. L. Lagrange, L. A. Seeber and K. F. Gauss.
While developing the theory of reduction of positive definite quadratic forms, they obtained limit forms for which the ratio of the minimum value of these forms at integer points other than 0 to their determinant is maximal.
In the middle of the 19th century, Sh. Hermit obtained an estimate for this quantity for an arbitrary dimension. And at the end of the 19th century, A. N. Korkin and E. I. Zolotarev proposed a new method for reducing quadratic forms, which made it possible to obtain exact
values of the Hermite constant up to dimension 8.
In this paper, we will consider a quantity equivalent to the Hermite constant, the critical determinant of the unit sphere. It should be noted that these quantities are closely connected with other problems in the geometry of numbers, for example, the problems of finding the density of the best packing, finding the shortest lattice vector, and Diophantine approximations. We present critical lattices of dimensions up to 8 and consider some of their metric properties.

About the Author

Yurij Aleksandrovich Basalov
Tula State Lev Tolstoy Pedagogical University
Russian Federation

candidate of physical and mathematical sciences



References

1. Venkov B. A. 1952, “To the work “On some properties of positive perfect quadratic forms”, in

2. the book. G. F. Voronoi”, Sobr. soch., vol. 2, publishing House of the Academy of Sciences of

3. the Ukrainian SSR.

4. Venkov B. A. 1940, “Uber die Reduction positiver quadratischer Formen”, Izv. Akad. Nauk

5. SSSR Ser. Mat., Vol. 4, 1940, p. 37–52.

6. Venkov B. A. 1937, Elementary number theory, ONTI NKTP USSR.

7. Dirichlet P. G. L., 1936, Lectures on number theory, ONTI NKTP USSR.

8. Gruber. p. M., Lekkerkerker. C. G. 1987, Geometry of numbers, Elsevier Science Publishers.

9. Cassels J. W. S. 1965, An Introduction to the Geometry of Numbers, Mir.

10. Cassels J. W. S. 1982, Rational quadratic forms, Mir.

11. Conway J., Slown N., 1990, Ball packings, lattices, and groups, Mir.

12. Ryshkov S. S., Baranovskii E. P. 1979, “Classical methods in the theory of lattice packings”,

13. Uspekhi Mat. Nauk, Vol. 34, Issue 4, p. 3-63; Russian Math. Surveys, Vol. 34, Issue 4, p. 1-68.

14. Barnes Е. S. 1957, “The complete enumeration of extreme senary forms”, Phil. Trans. Roy. Soc.

15. London, A-249, p. 461–506.

16. Вliсhfeldt H. F., 1934, “The minimum values of positive quadratic formes in six, seven and eight

17. variables”, Math. Z., 39, p. 1–15.

18. Gauss С. F. 1831, “Untersuchungen uber die Eigenschaften der positiven ternaren quadratischen”,

19. Formen von Ludwig August Seeber, Gottingische gelehrte Anzeigen.

20. Gauss С. F. 1959.Works on the theory of numbers, Publishing House of the Academy of Sciences

21. of the USSR.

22. Hermite Ch., Lettres de m. Hermite a m. Jacobie sur differemts objets de la theorie des Nombres

23. // J. Reine und Angew. math., 40, 1850, p. 261–315.

24. Jaquet-Chiffelle D.-O., 1993, “ ´Enum´eration compl`ete des classes de formes parfaites en

25. dimension 7”, Annales de l’Institut Fourier, Vol. 43, p. 21–55. http://doi.org/10.5802/aif.1320

26. Korkine A., Zolotareff G. 1872, “Sur les formes quadratiques positives quaternaires”, Math.

27. Ann., 5, p. 581–583.

28. Korkine A., Zolotareff G. 1873, “Sur les formes quadratiques”, Math. Ann., 6, p. 366–389.

29. Korkine A., Zolotareff G. 1877, “Sur les formes quadratiques positives”, Math. Ann., 11, p.

30. –292.

31. Lagrange J. L., 1773, Recherches d’arithmetique, Nouveaux Memoires de 1’Academie royal des

32. Sciences et Belles-Lettres de Berlin.

33. Minkowski Н. 1905, “Diskontinuitatsbereich fur arithmetische Aquivalenz”, J. Reine und Angew.

34. Math., 129, p. 220–274.

35. Minkowski Н., 1891, “Cher die positiven quadratischen Formen und liber Rettenbruchanliche”,

36. Algorithmen, J. Reine und Angew. Math., 107, p. 278–279.

37. Nowak W. G. 2016, “Simultaneous Diophantine approximation: Searching for analogues of

38. Hurwitz’s theorem”, In: T.M. Rassias and P.M. Pardalos (eds.), Essays in mathematics and its

39. applications. Springer/ Switzerland, p. 181–197.

40. Seeber L. A., 1831, Untersuchungen uber die Eigenschaften der positiven ternaren quadratischen

41. Formen, Freiburg.

42. Sikiric M., Schuermann A., Vallentin F., 2006, “Classification of eight dimensional perfect

43. forms”, Electronic Research Announcements of the American Mathematical Society, Vol. 13,

44. p. 21–32. http://doi.org/10.1090/S1079-6762-07-00171-0

45. Stасey К. С., 1975, “The enumeration of perfect septenary forms”, J. London Math. Soc., 2, 10,

46. p. 97–104.

47. Stасey K. C., 1976, “The perfect septenary forms with Δ4 = 2”, J. Austral. Math. Soc., 22, 2,

48. p. 144—164.

49. Vоrоnоi G., 1907, “Sur quelques proprietes des formes quadratiques positives parfaites”, J. Reine

50. und Angew. Math., 133, p. 97–178.


Review

For citations:


Basalov Yu.A. On critical lattices of the unit sphere. Chebyshevskii Sbornik. 2022;23(5):20-37. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-5-20-37

Views: 321


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)