Method and Some Results of Numerical Estimation of Effective Biot’s Coefficient of Rocks
https://doi.org/10.22405/2226-8383-2022-23-4-382-393
Abstract
In this article, a method and some results of the numerical estimation of effective Biot’s coefficient of a porous material are described. The estimation is made by carrying out the calculation on a representative volume element (RVE) of the material. The outer boundary of the RVE is rigidly fixed, and pressure is applied to the surface of the pores. The elasticity boundary value problem with given boundary conditions is solved numerically, using the Russian CAE-system "Fidesys". The stress field obtained as a result of the solution is averaged over the
volume. Effective Biot’s coefficient is calculated from the averaged stress tensor.
Comparison of the numerical results for the effective Biot coefficient with the analytical solution is carried out on the simplest model - a cube with a spherical pore. For different porosities and for different Poisson’s ratios of the material, it is shown that the error is no
more than 5%. Effective Biot’s coefficient is also estimated for models with a more complex pore shape. Numerical results show the presence of significant anisotropy in obtained Biot’s coefficients.
About the Authors
Maksim Yakovlevich YakovlevRussian Federation
candidate of physical and mathematical sciences
Alexander Alekseevich Semykin
Russian Federation
Vladimir Anatol’evich Levin
Russian Federation
doctor of physical and mathematical sciences, professor
References
1. Vershinin, A.V. 2022 “Poroelastoplastic modeling of a borehole stability under small and
2. finite strains using isoparametric spectral element method” Continuum Mechanics and
3. Thermodynamics, available at: https://doi.org/10.1007/s00161-022-01117-4
4. Yalaev, T.R. Bayuk, I.O. 2019, “Reconstruction of elastic properties and thermal conductivity
5. of solid materials from their small fragments”, International Journal of Engineering Science,
6. Vol. 144, available at: https://doi.org/10.1016/j.ijengsci.2019.103128/
7. Levin, V.A., Zingerman, K.M., Vershinin, A.V., Yakovlev, M.Ya. 2015, “Numerical analysis
8. of effective mechanical properties of rubber-cord composites under finite strains”, Composite
9. Structures, Vol. 131, pp. 25–36.
10. Vershinin, A.V., Levin, V.A., Zingerman, K.M., Sboychakov, A.M., Yakovlev, M.Ya. 2015,
11. “Software for estimation of second order effective material properties of porous samples with
12. geometrical and physical nonlinearity accounted for”, Advances in Engineering Software, Vol.
13. , pp. 80–84.
14. Yakovlev, M.Ya., Tanasevich, P.S., Vershinin, A.V., Levin, V.A. 2022, “Numerical analysis of
15. the effective thermal properties and the stability for NTE metamaterials using CAE fidesys”,
16. AIP Conference Proceedings, Vol. 2509, available at: https://doi.org/10.1063/5.0084835
17. Muraev, A.A., Tatoyan, A.D., Dolgalev, A.A., Vershinin, A.V., Yakovlev, M.Ya, Ivanov, S.Yu,
18. Konovalov, D.A., Petrovsky, K.A., Levin, V.A. 2022, “A sensitivity study by finite element
19. analysis for the abutment-implant-bone system”, Mathematics and Mechanics of Complex
20. Systems, Vol. 10, no. 1, pp. 1-20.
21. Stefanov, Yu P., Bakeev, R.A., Rebetsky, Yu L., Kontorovich, V.A. 2014, “Structure and
22. formation stages of a fault zone in a geomedium layer in strike-slip displacement of the
23. basement”, Physical Mesomechanic, Vol. 17, no. 3, pp. 204-215.
24. Levin, V.A., Vdovichenko, I.I., Vershinin, A.V., Yakovlev, M.Ya., Zingerman, K.M. 2016,
25. “Numerical Estimation of Effective Mechanical Properties for Reinforced Plexiglas in the
26. Two-Dimensional Case”, Modelling and Simulation in Engineering, Vol. 2016, available at:
27. https://doi.org/10.1155/2016/9010576
28. Levin, V.A., Vdovichenko, I.I., Vershinin, A.V., Yakovlev, M.Y., Zingerman, K.M. 2017, “An
29. approach to the computation of effective strength characteristics of porous materials”, Letters
30. on Materials, Vol. 7, no. 4, pp. 452–454.
31. Konovalov, D.A., Yakovlev, M.Ya. 2017, “Numerical estimation of effective elastic properties of
32. elastomer composites under finite strains using spectral element method with CAE Fidesys”,
33. Chebyshevskii Sbornik, Vol. 18, no. 3, pp. 316–329.
34. Levin, V.A., Zingerman, K.M., Yakovlev, M.Ya., Kurdenkova, E.O., Nemtinova, D.V. 2019,
35. “Estimation of Effective Properties of Periodic Cellular Structures using Beam and Shell Finite
36. Elements with CAE Fidesys”, Chebyshevskii Sbornik, Vol. 20, no. 2, pp. 528–541.
37. Vdovichenko, I.I., Yakovlev, M.Ya., Vershinin, A.V., Levin, V.A. 2016, “Calculation of the
38. effective thermal properties of the composites based on the finite element solutions of the
39. boundary value problems”, IOP Conf. Series: Materials Science and Engineering, Vol. 158, no.
40. , available at: https://doi.org/10.1088/1757-899X/158/1/012094
41. Fidesys LLC official website: http://cae-fidesys.ru/
42. Kozlov, V.V., Komolova E.D., Kartsev M.A., Filatova A.V. 2022 “Analysis of the capabilities
43. of the spectral element method in solving physically and geometrically nonlinear problems
44. of mechanics using the CAE Fidesys package” Continuum Mechanics and Thermodynamics,
45. available at: https://doi.org/10.1007/s00161-022-01121-8
46. Wendt A.S., Bayuk, I.O., Covey-Crump S.J., Wirth R., Lloyd G.E. 2003, “An experimental
47. and numerical study of the microstructural parameters contributing to the seismic anisotropy
48. of rocks”, Journal of Geophysical Research: Solid Earth, Vol. 108, no. B8, available at:
49. https://doi.org/10.1029/2002JB001915
50. Yarushina, V.M., Podladchikov, Y.Y., Wang L.H. 2020, “Model for (De)Compaction and
51. Porosity Waves in Porous Rocks Under Shear Stresses”, Journal of Geophysical Research: Solid
52. Earth, Vol. 125, no. 8, available at: https://doi.org/10.1029/2020JB019683
53. Yakovlev, M.Ya., Konovalov, D.A. 2022, “Multiscale geomechanical modeling under finite
54. strains using finite element method”, Continuum Mechanics and Thermodynamics, available
55. at: https://doi.org/10.1007/s00161-022-01107-6
56. Yakovlev, M.Ya., Bystrov, I.D., Zingerman, K.M., Levin, V.A. 2022, “Numerical
57. Simulation of the Pore Pressure Influence on the Effective Mechanical Properties
58. of Rocks Using CAE Fidesys”, AIP Conference Proceedings, Vol. 2509, available at:
59. https://doi.org/10.1063/5.0084834
60. Biot M.A. 1956, “Theory of propagation of elastic waves in a fluid-saturated Porous Solid (I.
61. Low frequency range, II. Higher frequency range)”, Journal of the Acoustical Society of America,
62. Vol. 28, pp. 168-181.
63. Biot M.A., Willis D.G. 1957, “The elastic coefficients of the theory of consolidation”, Journal
64. of Applied Mechanics, Vol. 24, pp. 594–601.
65. Biot M.A. 1955, “Theory of elasticity and consolidation for a porous anisotropic solid”, Journal
66. of Applied Physics, Vol. 26, no. 2, pp. 182–185.
67. Lurie, A.I. 1990, Nonlinear theory of elasticity, Amsterdam, North-Holland
Review
For citations:
Yakovlev M.Ya., Semykin A.A., Levin V.A. Method and Some Results of Numerical Estimation of Effective Biot’s Coefficient of Rocks. Chebyshevskii Sbornik. 2022;23(4):382-393. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-4-382-393