Preview

Chebyshevskii Sbornik

Advanced search

Method and Some Results of Numerical Estimation of Effective Biot’s Coefficient of Rocks

https://doi.org/10.22405/2226-8383-2022-23-4-382-393

Abstract

In this article, a method and some results of the numerical estimation of effective Biot’s coefficient of a porous material are described. The estimation is made by carrying out the calculation on a representative volume element (RVE) of the material. The outer boundary of the RVE is rigidly fixed, and pressure is applied to the surface of the pores. The elasticity boundary value problem with given boundary conditions is solved numerically, using the Russian CAE-system "Fidesys". The stress field obtained as a result of the solution is averaged over the
volume. Effective Biot’s coefficient is calculated from the averaged stress tensor.
Comparison of the numerical results for the effective Biot coefficient with the analytical solution is carried out on the simplest model - a cube with a spherical pore. For different porosities and for different Poisson’s ratios of the material, it is shown that the error is no
more than 5%. Effective Biot’s coefficient is also estimated for models with a more complex pore shape. Numerical results show the presence of significant anisotropy in obtained Biot’s coefficients.

About the Authors

Maksim Yakovlevich Yakovlev
Lomonosov Moscow State University
Russian Federation

candidate of physical and mathematical sciences



Alexander Alekseevich Semykin
Fidesys LLC
Russian Federation


Vladimir Anatol’evich Levin
Lomonosov Moscow State University
Russian Federation

doctor of physical and mathematical sciences, professor



References

1. Vershinin, A.V. 2022 “Poroelastoplastic modeling of a borehole stability under small and

2. finite strains using isoparametric spectral element method” Continuum Mechanics and

3. Thermodynamics, available at: https://doi.org/10.1007/s00161-022-01117-4

4. Yalaev, T.R. Bayuk, I.O. 2019, “Reconstruction of elastic properties and thermal conductivity

5. of solid materials from their small fragments”, International Journal of Engineering Science,

6. Vol. 144, available at: https://doi.org/10.1016/j.ijengsci.2019.103128/

7. Levin, V.A., Zingerman, K.M., Vershinin, A.V., Yakovlev, M.Ya. 2015, “Numerical analysis

8. of effective mechanical properties of rubber-cord composites under finite strains”, Composite

9. Structures, Vol. 131, pp. 25–36.

10. Vershinin, A.V., Levin, V.A., Zingerman, K.M., Sboychakov, A.M., Yakovlev, M.Ya. 2015,

11. “Software for estimation of second order effective material properties of porous samples with

12. geometrical and physical nonlinearity accounted for”, Advances in Engineering Software, Vol.

13. , pp. 80–84.

14. Yakovlev, M.Ya., Tanasevich, P.S., Vershinin, A.V., Levin, V.A. 2022, “Numerical analysis of

15. the effective thermal properties and the stability for NTE metamaterials using CAE fidesys”,

16. AIP Conference Proceedings, Vol. 2509, available at: https://doi.org/10.1063/5.0084835

17. Muraev, A.A., Tatoyan, A.D., Dolgalev, A.A., Vershinin, A.V., Yakovlev, M.Ya, Ivanov, S.Yu,

18. Konovalov, D.A., Petrovsky, K.A., Levin, V.A. 2022, “A sensitivity study by finite element

19. analysis for the abutment-implant-bone system”, Mathematics and Mechanics of Complex

20. Systems, Vol. 10, no. 1, pp. 1-20.

21. Stefanov, Yu P., Bakeev, R.A., Rebetsky, Yu L., Kontorovich, V.A. 2014, “Structure and

22. formation stages of a fault zone in a geomedium layer in strike-slip displacement of the

23. basement”, Physical Mesomechanic, Vol. 17, no. 3, pp. 204-215.

24. Levin, V.A., Vdovichenko, I.I., Vershinin, A.V., Yakovlev, M.Ya., Zingerman, K.M. 2016,

25. “Numerical Estimation of Effective Mechanical Properties for Reinforced Plexiglas in the

26. Two-Dimensional Case”, Modelling and Simulation in Engineering, Vol. 2016, available at:

27. https://doi.org/10.1155/2016/9010576

28. Levin, V.A., Vdovichenko, I.I., Vershinin, A.V., Yakovlev, M.Y., Zingerman, K.M. 2017, “An

29. approach to the computation of effective strength characteristics of porous materials”, Letters

30. on Materials, Vol. 7, no. 4, pp. 452–454.

31. Konovalov, D.A., Yakovlev, M.Ya. 2017, “Numerical estimation of effective elastic properties of

32. elastomer composites under finite strains using spectral element method with CAE Fidesys”,

33. Chebyshevskii Sbornik, Vol. 18, no. 3, pp. 316–329.

34. Levin, V.A., Zingerman, K.M., Yakovlev, M.Ya., Kurdenkova, E.O., Nemtinova, D.V. 2019,

35. “Estimation of Effective Properties of Periodic Cellular Structures using Beam and Shell Finite

36. Elements with CAE Fidesys”, Chebyshevskii Sbornik, Vol. 20, no. 2, pp. 528–541.

37. Vdovichenko, I.I., Yakovlev, M.Ya., Vershinin, A.V., Levin, V.A. 2016, “Calculation of the

38. effective thermal properties of the composites based on the finite element solutions of the

39. boundary value problems”, IOP Conf. Series: Materials Science and Engineering, Vol. 158, no.

40. , available at: https://doi.org/10.1088/1757-899X/158/1/012094

41. Fidesys LLC official website: http://cae-fidesys.ru/

42. Kozlov, V.V., Komolova E.D., Kartsev M.A., Filatova A.V. 2022 “Analysis of the capabilities

43. of the spectral element method in solving physically and geometrically nonlinear problems

44. of mechanics using the CAE Fidesys package” Continuum Mechanics and Thermodynamics,

45. available at: https://doi.org/10.1007/s00161-022-01121-8

46. Wendt A.S., Bayuk, I.O., Covey-Crump S.J., Wirth R., Lloyd G.E. 2003, “An experimental

47. and numerical study of the microstructural parameters contributing to the seismic anisotropy

48. of rocks”, Journal of Geophysical Research: Solid Earth, Vol. 108, no. B8, available at:

49. https://doi.org/10.1029/2002JB001915

50. Yarushina, V.M., Podladchikov, Y.Y., Wang L.H. 2020, “Model for (De)Compaction and

51. Porosity Waves in Porous Rocks Under Shear Stresses”, Journal of Geophysical Research: Solid

52. Earth, Vol. 125, no. 8, available at: https://doi.org/10.1029/2020JB019683

53. Yakovlev, M.Ya., Konovalov, D.A. 2022, “Multiscale geomechanical modeling under finite

54. strains using finite element method”, Continuum Mechanics and Thermodynamics, available

55. at: https://doi.org/10.1007/s00161-022-01107-6

56. Yakovlev, M.Ya., Bystrov, I.D., Zingerman, K.M., Levin, V.A. 2022, “Numerical

57. Simulation of the Pore Pressure Influence on the Effective Mechanical Properties

58. of Rocks Using CAE Fidesys”, AIP Conference Proceedings, Vol. 2509, available at:

59. https://doi.org/10.1063/5.0084834

60. Biot M.A. 1956, “Theory of propagation of elastic waves in a fluid-saturated Porous Solid (I.

61. Low frequency range, II. Higher frequency range)”, Journal of the Acoustical Society of America,

62. Vol. 28, pp. 168-181.

63. Biot M.A., Willis D.G. 1957, “The elastic coefficients of the theory of consolidation”, Journal

64. of Applied Mechanics, Vol. 24, pp. 594–601.

65. Biot M.A. 1955, “Theory of elasticity and consolidation for a porous anisotropic solid”, Journal

66. of Applied Physics, Vol. 26, no. 2, pp. 182–185.

67. Lurie, A.I. 1990, Nonlinear theory of elasticity, Amsterdam, North-Holland


Review

For citations:


Yakovlev M.Ya., Semykin A.A., Levin V.A. Method and Some Results of Numerical Estimation of Effective Biot’s Coefficient of Rocks. Chebyshevskii Sbornik. 2022;23(4):382-393. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-4-382-393

Views: 272


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)