Theoretical and numerical plastic strain localization analysis at plane strain of isotropic dilating non-associated media at plane strain conditions
https://doi.org/10.22405/2226-8383-2022-23-4-285-307
Abstract
The article is devoted to the limit plastic state and localization of plastic deformations along shear bands in dilating media with a non-associative flow rule. The equations of the characteristics of systems of equations for stresses and velocities in a plane strain state for an
arbitrary function of the yield surface dependenе on the first two invariants in the rigid-plastic framework are obtained. Equations for stresses along the characteristics for the limit state and the condition of their hyperbolicity are obtained. A numerical model of the solution of the elastic-plastic problem by Galerkin equations on high-order spectral elements is presented.
Numerical experiments have been carried out for the linear function of the yield surface in order to establish the boundaries of the range of possible slopes of the shear bands and to test the theoretical results.
About the Authors
Vladimir Anatol’evich LevinRussian Federation
doctor of physical and mathematical sciences, professor
Kirill Yurievich Krapivin
Russian Federation
References
1. Mohr, O. (1900), Welche Umstande bedingen der Bruch und der Elastizit¨atsgrenze des
2. Materials, Z. Vereins Deutscher lngenieure, 1524.
3. Nadai. A. Theory of Flow and Fracture of Solids Vol. 1. McGraw-Hill. New York. (1950)
4. Prandtl, L. "¨Uber die H¨arte plastischer K¨orper". Nachrichten von der Gesellschaft der
5. Wissenschaften zu G¨ottingen, Mathematisch-Physikalische Klasse. 1920: 74-85.
6. Hencky, H. (1923), ¨Uber Einige Statisch Bestimmte F¨alle Des Gleichgewichts In Plastischen
7. K¨orpern. Z. angew. Math. Mech., 3: 241-251
8. H. Polaczek-Geiringer, “Beitrag zum vollstandigen ebenen Plastizit¨atsproblem, in Verhandlungen
9. d. 3 Intern. Kongress f. techn. Mechank, Stockholm, 1930, pp. 185–190.
10. Christianovich S., Michlin S., Davison B., Some new issues of continuum mechanics Moscow,
11. Leningrad, 1938. (In Russian)
12. J. Mandel. Equilibre par trasches planes des solides `a la limite d’´ecoulement. PhD thesis, Th`ese,
13. Paris, 1942.
14. Hill R. The Mathematical Theory of Plasticity. Oxford Univ. Press, London (1950).
15. Kachanov L. M. Foundations of the theory of plasticity. Amsterdam: North-Holland, 1971. 482
16. p.
17. A.Yu. Ishlinskii and D. D. Ivlev, Mathematical Theory of Plasticity [in Russian], Fizmatlit,
18. Moscow (2001).
19. Freudenthal A.M., Geiringer H. (1958) The Mathematical Theories of the Inelastic Continuum.
20. In: Fl¨ugge S. (eds) Elasticity and Plasticity / Elastizit¨at und Plastizit¨at. Encyclopedia of
21. Physics / Handbuch der Physik. Springer, Berlin.
22. Sokolovskii V. V. Statics of Granular Media. Oxford: Pergamon Press, 1965
23. Nemat-Nasser, S. and A. Shokooh (1980), On finite plastic flows of compressible materials with
24. internal friction, Int. J. Solid Struct. 16, 495-514.
25. J. Hadamard, L., A. Le¸cons sur la Propagation des Ondes et les ´Equations de l’Hydrodynamique.
26. Nature 71, 196–197 (1904). https://doi.org/10.1038/071196a0
27. Hill. R. (1958). A general theory of uniqueness and stability in elastic-plastic solids. 1. Mech.
28. Phys. Solids 6, pp.236–249.
29. Hill R. Acceleration waves in solids. J. Mech. Phys. Solids, 10:1–16, 1962.
30. T. Y. Thomas Plastic Flow and Fracture in Solids. Academic Press, New York (1961).
31. Mandel J. (1964) Propagation des surfaces de discontinuit´e dans un milieu ´elastoplastique. In:
32. Kolsky H., Prager W. (eds) Stress Waves in Anelastic Solids. International Union of Theoretical
33. and Applied Mechanics. Springe, pp. 331-340.
34. J. Mandel, Conditions de stabilit´e et postulat de Drucker, in: J. Kravtchenko and P.M. Sirieys,
35. eds., Rheology and Soil Mechanics (Springer, Berlin, 1966) pp. 58–68.
36. J. W.Rudnicki and J. R. Rice. Conditions of the localization of deformation in pressure-sensitive
37. dilatant material. J. Mech. Phys. Solids, 23:371-394, 1975.
38. Rice, J.R., The localization of plastic deformation, in: Koiter, W. T. (ed.), Proc. Hth Int. Congr.
39. Thcoret. Appl. Mech., North-Holland, pp. 207–220, 1977.
40. K. Runesson, N.S. Ottosen, and D. Peric. Discontinuous bifurcations of elastic-plastic solutions
41. at plane stress and plane strain.Int. J. Plast., 7:99-121, 1991.
42. K. H. Roscoe. The Influence of Strains in Soil Mechanics. G´eotechnique, 1970, 20:2, 129-170
43. J. R. F. Arthur, T. Dunstan, Q. A. J. L. Al-Ani, and A. Assadi. Plastic deformation and failure
44. in granular media. G´eotechnique, 1977, 27:1, 53-74
45. P. A. Vermeer.The orientation of shear bands in biaxial tests.G´eotechnique, 1990, 40:2, 223-236.
46. I. Vardoulakis, Int. J. Numer. Anal. Methods Geomech. 4 (1980) p.103
47. M. Ortiz, Y. Leroy, A. Needleman, A finite element method for localized failure analysis,
48. Computer Methods in Applied Mechanics and Engineering, Volume 61, Issue 2, 1987, Pages
49. -214.
50. Simo, J.C., Oliver, J. & Armero, F. An analysis of strong discontinuities induced by strainsoftening
51. in rate-independent inelastic solids. Computational Mechanics 12, 277–296 (1993).
52. https://doi.org/10.1007/BF00372173
53. F. Armero and K. Garikipati, ‘An analysis of strong discontinuity in multiplicative finite strain
54. plasticity and their relation with the numerical simulation of strain localization in solids’, Int.
55. J. Solids Struct., 33(20-22), 2863-2885 (1996).
56. Jeremi´c, B. and Xenophontos, C. (1999), Application of the p-version of the finite
57. element method to elastoplasticity with localization of deformation. Commun. Numer.
58. Meth. Engng., 15: 867-876. https://doi.org/10.1002/(SICI)1099-0887(199912)15:12<867::AIDCNM296
59. > 3.0.CO;2-9
60. Richard A. Regueiro, Ronaldo I. Borja, ‘Plane strain finite element analysis of pressure sensitive
61. plasticity with strong discontinuity’, International Journal of Solids and Structures, Volume 38,
62. Issue 21, 2001, Pages 3647-3672, https://doi.org/10.1016/S0020-7683(00)00250-X.
63. Duretz, T., Souche, A., de Borst, R., & Le Pourhiet, L. (2018). The benefits of using a
64. consistent tangent operator for viscoelastoplastic computations in geodynamics. Geochemistry,
65. Geophysics, Geosystems, 19, 4904– 4924. https://doi.org/10.1029/2018GC007877
66. Levin V.A., Zingerman K.M., Krapivin K.Yu., Yakovlev M.Y. Legendre spectral element for
67. plastic localization problems at large scale strains.Chebyshevskii Sbornik. 2020;21(3):306-316.
68. (In Russ.) https://doi.org/10.22405/2226-8383-2020-21-3-306-316
69. Zienkiewicz O.C., Taylor R.L., Fox D.D. The finite element method for solid and structural
70. mechanics. Seventh Edition. Elsevier, 2014
71. Babuˇska I., Suri M. The p- and h-p versions of the finite element method, an overview. Computer
72. Methods in Applied Mechanics and Engineering. Vol. 80, Issues 1–3, 1990, P. 5-26
73. B. Szab´o, I. Babuˇska. (2011). An Introduction to Finite Element Analysis. Wiley.
74. Solin, P., Segeth, K., Dolezel, I. (2003). Higher-Order Finite Element Methods. Chapman and
75. Hall/CRC. https://doi.org/10.1201/9780203488041
76. Konovalov, D., Vershinin, A., Zingerman, K., Levin, V. The implementation of spectral element
77. method in a CAE system for the solution of elasticity problems on hybrid curvilinear meshes.
78. Modelling and Simulation in Engineering, 2017, 1797561
79. de Borst, R., Crisfield, M.A., Remmers, J.J.C. and Verhoosel, C.V. (2012). Solution
80. Techniques in Quasi-Static Analysis. In Non-Linear Finite Element Analysis of Solids and
81. Structures (eds R. de Borst, M.A. Crisfield, J.J.C. Remmers and C.V. Verhoosel). https://
82. doi.org/10.1002/9781118375938.ch4
83. Babuˇska I., Suri M. Locking effects in the finite element approximation of elasticity problems.
84. Numer. Math. 62, 439–463 (1992). https://doi.org/10.1007/BF01396238
85. Babuˇska I., Suri M. ‘On Locking and Robustness in the Finite Element Method’, SIAM J.
86. Numer. Anal., 29:5, 1261-1293 (1992)
87. De Borst, R. and Groen, A.E. (1995), Some observations on element performance in
88. isochoric and dilatant plastic flow. Int. J. Numer. Meth. Engng., 38: 2887-2906. https://
89. doi.org/10.1002/nme.1620381704
90. S. Eisentr¨ager, E. Atroshchenko and R. Makvandi, On the condition number of high order finite
91. element methods: Influence of p-refinement and mesh distortion, Computers and Mathematics
92. with Applications (2020), https://doi.org/10.1016/j.camwa.2020.05.012.
93. E. A. de Souza Neto, D. Peri´c, D. R. J. Owen. Computational Methods for Plasticity: Theory
94. and Applications. Wiley, 2008
Review
For citations:
Levin V.A., Krapivin K.Yu. Theoretical and numerical plastic strain localization analysis at plane strain of isotropic dilating non-associated media at plane strain conditions. Chebyshevskii Sbornik. 2022;23(4):285-307. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-4-285-307