Estimation of convergence of spectral element method in CAE Fidesys based on exact solution of the Lame problem for elastoplastic materials using an automated regression testing system
https://doi.org/10.22405/2226-8383-2022-23-4-272-284
Abstract
This paper considers convergence estimation of the spectral element method implemented in CAE Fidesys. It was based on exact analytical solutions of the Lame problems in small deformations in the elastic and elastic-perfectly plastic obeying Huber-von Mises yield criterion
formulations. Due to the symmetry, we consider quarters of the models. Numerical results were obtained in the CAE Fidesys strength analysis system using the finite element method for the first and second orders and the spectral element method for the third to ninth orders. Based on the results obtained, an analysis was carried out to determine the nature of the decrease in the errors of the CAE Fidesys spectral element method with an increase in the order of the
elements. The study was conducted using a specialized automated testing system. The results of the work can be useful in making a decision on the use of the spectral element method in industrial calculations.
About the Authors
Vladimir Anatol’evich LevinRussian Federation
doctor of physical and mathematical sciences, professor
Viktor Vyacheslavovich Kozlov
Russian Federation
candidate of physical and mathematical sciences
Elena Dmitrievna Komolova
Russian Federation
candidate of physical and mathematical sciences
Alexandra Vyacheslavovna Filatova
Russian Federation
Mikhail Aleksandrovich Kartsev
Russian Federation
postgraduate student
References
1. Levin, V. A., Zingerman, K. M., Yakovlev, M.Ya., Kurdenkova, E. O., Nemtinova, D. V. 2019,
2. “On the numerical estimation of the effective characteristics of periodic cellular structures using
3. beam and shell finite elements using CAE Fidesys“, Chebyshevskii sbornik, vol. 20, no. 2, pp.
4. -541. http://doi.org/10.22405/2226-8383-2019-20-2-528-541
5. Vershinin, A. V., Zingerman, K. M., Konovalov, D. A., Levin, V. An. 2019, “Numerical modeling
6. in CAE Fidesys of the additive manufacturing process based on the method of spectral elements
7. on nonconformal grids“, Modern problems of mathematics and mechanics. Proceedings of the
8. international conference dedicated to the 80th anniversary of Academician V. A. Sadovnichy,
9. vol. 2, pp. 642-647.
10. Levin, V. A. 2017, “The theory of multiple imposition of large deformations, development for
11. solving interdisciplinary problems. Ways of its implementation in the Fidesys package for
12. carrying out strength analysis in new industries“, Chebyshevskii sbornik, vol. 18, no. 3, pp.
13. -537. https://doi.org/10.22405/2226-8383-2017-18-3-524-542
14. Kukushkin, A. V., Konovalov, D. A., Vershinin, A. V., Levin, V. A. 2019, “Numerical simulation
15. in CAE Fidesys of bonded contact problems on non-conformal meshes“, Journal of Physics:
16. Conference Series, vol. 1158, no. 2, pp. 032022. https://doi.org/10.1088/1742-6596/1158/
17. /032022
18. Official site of Fidesys LLC. URL: https://www.cae-fidesys.com/documentation (accessed
19. /15/2022)
20. Morozov, E. M., Levin, V. A., Vershinin, A. V. 2015, Prochnostnoy analiz: Fidesys v rukakh
21. inzhenera [Strength analysis: Fidesys in the hands of an engineer], LENAND, Moscow, Russia.
22. Gorbachenko, I. M. 2013, “Quality assessment of software for creating testing systems“,
23. Fundamental research, no. 6-4, pp. 823-827.
24. Prokhorenok, N. A. 2012, Python 3 i PyQt. Razrabotka prilozheniy [Python 3 and PyQt.
25. Application Development], BHV-Petersburg, St. Petersburg, Russia.
26. Mackini, W. 2020, Python i analiz dannykh [Python and data analysis], Translated by Slinkina,
27. A. A, DMK Press, Moscow, Russia.
28. Kalitkin, N. N. 1976, Chislennyye metody [Numerical methods], Higher. school, Moscow, Russia.
29. Amosov, A. A., Dubinsky, Yu. A., Kopchenov, N. V. 1994, Vychislitel’nyye metody dlya inzhenerov:
30. ucheb. posobiye [Computational methods for engineers: textbook], Higher. school,
31. Moscow, Russia.
32. Zienkiewicz, O. C., Taylor, R. L., Zhu, J. Z. 2013, The Finite Element Method: Its Basis and
33. Fundamentals 7th edition, Butterworth-Heinemann, Oxford, United Kingdom. https://doi.
34. org/10.1016/C2009-0-24909-9
35. Fish, J., Belutschko, T. 2007, A First Course in Finite Elements, John Wiley & Sons Ltd, New
36. York. https://doi.org/10.1002/9780470510858.index
37. Vershinin, A. V., Levin, V. A., Kukushkin, A. V., Konovalov, D. A. 2020, “Structural analysis of
38. assemblies using non-conformal spectral element method“, IOP Conf. Ser.: Mater. Sci. Eng.,
39. no.747, pp. 012033. https://doi.org/10.1088/1757-899x/747/1/012033
40. Orel, B., Perne, A. 2014, “Chebyshev-Fourier Spectral Methods for Nonperiodic Boundary
41. Value Problems“, Journal of Applied Mathematics, pp. 1-10. https://doi.org/10.1155/2014/
42.
43. Petrovskiy, K. A., Vershinin, A. V., Levin, V. A. 2016, “Application of spectral elements method
44. to calculation of stress-strain state of anisotropic laminated shells“, IOP Conf. Ser.: Mater. Sci.
45. Eng., no. 158, pp. 012077. https://doi.org/10.1088/1757-899x/158/1/012077
46. Karpenko, V. S., Vershinin, A. V., Levin, V.A., Zingerman, K. M. 2016, “Some results of
47. mesh convergence estimation for the spectral element method of different orders in FIDESYS
48. industrial package“, IOP Conf. Ser.: Mater. Sci. Eng., no. 158, pp. 012049. https://doi.org/
49. 1088/1757-899x/158/1/012049
50. Konovalov, D., Vershinin, A., Zingerman, K., Levin, V. 2017, “The implementation of spectral
51. element method in a CAE system for the solution of elasticity problems on hybrid curvilinear
52. meshes“, Modelling and Simulation in Engineering, pp. 1797561. https://doi.org/10.1155/
53. /1797561
54. Solin, P., Segeth, K., Dolezel, I. 2003, Higher-Order Finite Element Methods, Chapman &
55. Hall/CRC Press, London, United Kingdom.
56. Kozlov, V. V., Komolova, E. D., Filatova, A. V. 2021, “Using the CAE Fidesys autotest system
57. to assess the convergence of the spectral element method to the exact solution with increasing
58. element order“, Lomonosov Readings. Scientific Conference. Section of mechanics. April 20-26,
59. Abstracts of reports. Publishing House of Moscow State University, pp. 114-115.
60. Kozlov, V. V., Komolova, E. D., Kartsev, M. A., Filatova, A. V. 2022, “Analysis of the
61. capabilities of the spectral element method in solving physically and geometrically nonlinear
62. problems of mechanics using the CAE Fidesys package“, Continuum Mech. Thermodyn. https:
63. //doi.org/10.1007/s00161-022-01121-8
64. Sedov, L. I. 1970, Mekhanika sploshnoy sredy, tom 2 [Continuum mechanics, volume 2], Nauka,
65. Moscow, Russia.
66. Kachanov, L. M. 1971, Foundations of the Theory of Plasticity, North-Holland, Amsterdam.
67. https://doi.org/10.1007/978-0-387-33599-5\_3
68. Levin, V. A., Zubov, L. M., Zingerman, K. M. 2015, “An exact solution for the problem of
69. flexure of a composite beam with preliminarily strained layers under large strains“, International
70. Journal of Solids and Structures, vol. 67-68, pp. 244-249. https://doi.org/10.1016/j.
71. ijsolstr.2015.04.024
72. Levin, V. A., Zubov, L. M., Zingerman, K. M. 2016, “An exact solution for the problem of flexure
73. of a composite beam with preliminarily strained layers under large strains. Part 2. Solution for
74. different types of incompressible materials“, International Journal of Solids and Structures, vol.
75. -101, pp. 558-565. https://doi.org/10.1016/j.ijsolstr.2016.09.029
76. Levin, V. ,A., Zubov, L. M., Zingerman, K. M. 2015,“Exact solution of the nonlinear bending
77. problem for a composite beam containing a prestressed layer at large strains“, Doklady Physics,
78. vol. 60, pp. 24-27. https://doi.org/10.1134/S102833581501005X
79. Zingerman, K. M., Levin, V. A. 2012, “Some qualitative effects in the exact solutions of the
80. Lam´e problem for large deformations“, Journal of Applied Mathematics and Mechanics, vol. 76,
81. pp. 205-219. https://doi.org/10.1016/j.jappmathmech.2012.05.012
82. Levin, V. A., Zubov, L. M., Zingerman, K. M. 2021, “An exact solution to the problem of biaxial
83. loading of a micropolar elastic plate made by joining two prestrained arc-shaped layers under
84. large strains“, European Journal of Mechanics, A/Solids, vol. 88, pp. 104237. https://doi.
85. org/10.1016/j.euromechsol.2021.104237
86. Levin, V. A., Podladchikov, Y. Y., Zingerman, K. M. 2021, “An exact solution to the Lame
87. problem for a hollow sphere for new types of nonlinear elastic materials in the case of large deformations“, European Journal of Mechanics, A/Solids, vol. 90, pp. 104345. https://doi.
88. org/10.1016/j.euromechsol.2021.104345
89. Levin, V. A., Zubov, L. M., Zingerman, K. M. 2016, “Large bending strains in an orthotropic
90. beam with a preliminarily stretched or compressed layer: Exact solution“, Doklady Physics, vol.
91. , pp. 407-411. https://dx.doi.org/10.1134/S1028335816080127
Review
For citations:
Levin V.A., Kozlov V.V., Komolova E.D., Filatova A.V., Kartsev M.A. Estimation of convergence of spectral element method in CAE Fidesys based on exact solution of the Lame problem for elastoplastic materials using an automated regression testing system. Chebyshevskii Sbornik. 2022;23(4):272-284. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-4-272-284