Comparison of structural functions method approximations of the solution of a linear elastic layered plate bending problem
https://doi.org/10.22405/2226-8383-2022-23-4-211-232
Abstract
This paper comes to compare four different approximations of the solution to a layered linear elastic plate bending problem, obtained by the structural functions method. This method is in representation of a nonhomogeneous body displacement field as a weighted
sum of spatial derivatives of the so-called concomitant body displacements, the weighting coefficients are named structural functions of the nonhomogeneous body; the concomitant
body is a homogeneous one, subjected to the same loadings and boundary conditions, as the nonhomogeneous body; we come through the basic steps of structural functions method in this
paper. For the concomitant plate displacements, we consider two well-known approximations: the classical plate theory and the first-order shear deformation theory. We obtain the first- and the second-order structural functions of a layered plate. We derive direct formulae for the firstand second-order structural functions method approximations of the nonhomogeneous plate displacements, using both concomitant plate displacements approximations. For a set of sample plates, we compute the obtained structural functions method approximations, and compare the computation results with a known Pagano solution to the nonhomogeneous plate bending problem. The approximation, based on the first-order shear deformation theory approach to
the concomitant body displacements computation, gives an acceptable result in the considered cases.
About the Author
Lyubov Alexandrovna KabanovaRussian Federation
junior researcher
References
1. Gorbachev V. I. 1991. “Green’s tensors method for solution of boundary value problem of
2. nonhomogeneous elasticity“, Vychislitel’naya mekhanika [in Russian], vol. 2, p. 61–76.
3. Gorbachev V. I. 1991. “A variant of the averaging method for solving boundary value problems
4. of inhomogeneous elasticity“, Doctor of Science thesis, Lomonosov MSU, 395 pp.
5. Gorbachev, V. I., Kokarev, A. S. 2005. “Integral formula in dynamical problem on inhomogeneous
6. elasticity“, Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika [in
7. Russian], vol. 2, 62-66.
8. Gorbachev V. I. 2014. “Integral formulae in the coupled problem of the 4elasticity of an
9. inhomogeneous body. application in the mechanics of composite materials“, Journal of Applied
10. Mathematics and Mechanics (English translation of Prikladnaya Matematika i Mekhanika), vol.
11. , no. 2., p. 192–208.
12. Emel’yanov, A.N. 2015. “Effective material functions of laminated composites in the linear
13. moment theory of elasticity“, Moscow Univ. Mech. Bull. vol. 70, no.1, pp. 8–12
14. Gorbachev, V. I. 2017. “Integral formulas of solutions of the basic linear differential equations
15. of mathematical physics with variable factors“, Chebyshevskii Sbornik, vol. 18, no. 3, 210-234.
16. Gorbachev V. I., Moskalenko O. B. 2011. “Stability of a straight bar of variable rigidity“,
17. Mechanics of Solids, vol. 46, no. 4., pp. 645–655.
18. Gorbachev V. I., Olekhova L. V. 2007. “Effective properties of a nonuniform beam under
19. torsion“, Moscow University Mechanics Bulletin, vol. 62, no. 5, pp. 123–130.
20. Gorbachev V. I. 2017. “Heat propagation in a nonuniform rod of variable cross section“, Moscow
21. University Mechanics Bulletin, vol. 72, no. 2., pp. 48–53.
22. Gorbachev V. I. 2020. “Differential equations with variable coefficients in the mechanics of
23. inhomogeneous bodies“, Mechanics of Solids, vol. 55, no. 3, pp. 396–402.
24. Gorbachev V. I., Gulin V. V. 2021. “Exact solutions of some problems of the theory of elasticity
25. on the equilibrium of an anisotropic inhomogeneous band“, Kompozity i nanostruktury, vol. 13,
26. no. 3-4, pp. 120–126
27. Solyaev Y. O., Gorbachev V. I. 2019 “Omparison between Mori-Tanaka and Gorbachev-
28. Pobedrya methods in the problem of determinination of the effective properties of composites
29. with piezoelectric spherical inclusions“, Mekhanika kompozicionnyh materialov i konstrukcij [in
30. Russian], vol. 25, no. 1, pp. 57–75.
31. Kirchoff G. 1877. “Vorlesungen ¨Uber Mathematische Physik: Mechanik“.
32. Reddy J. N. 2006. “Theory and analysis of elastic plates and shells“, CRC press.
33. Kienzler R., Shneider P. 2013. “Comparison of various linear plate theories in the light of a
34. consistent second order approximation“, Shell Structures: Theory and Applications. vol. 3, pp.
35. -112.
36. Hencky H. 1947. “Uber due Beriicksichtigung der Schubverzerrung in ebenen Platten’“, lng.
37. Levinson M. 1980. An accurate, simple theory of the statics and 3amics of elastic plates,
38. Mechanics Research Communications, vol. 7, no. 6, pp. 343-350.
39. Stephen N. G. 1997. “Mindlin plate theory: best shear coefficient and higher spectra validity“,
40. Journal of Sound and Vibration, vol. 202, no. 4, pp. 539-553.
41. Vassiliev V.V, Lurie S.A. 1992. “On refined theories of beams, plates & shells“, J. of Composite
42. Materials, vol. 26, No 4.
43. Vassiliev V.V, Lurie S.A. 1990. “On the problem of constructing non-classical theories of plates“,
44. Izvestiya AN SSSR, MTT, no. 2., pp. 158-167
45. Mechab B., Mechab I., Benaissa S. 2012. “Analysis of thick orthotropic laminated composite
46. plates based on higher order shear deformation theory by the new function under thermomechanical
47. loading“, Composites Part B: Engineering., vol. 43, no. 3, pp. 1453-1458.
48. Tovstik P. E. 2019. “Two-dimensional model of second-order accuracy for an anisotropic plate“,
49. Vestnik St. Petersburg University, Mathematics, vol. 52, no. 1, pp. 112-121.
50. Zenkour A. M., El-Mekawy H. F. 2014. “Bending of inhomogeneous sandwich plates with
51. viscoelastic cores“, Journal of Vibroengineering, vol. 16, no. 7, pp. 3260-3272.
52. Hadavinia H. et al. 2006. “Deriving shear correction factor for thick laminated plates using the
53. energy equivalence method“, Structural Durability & Health Monitoring., vol. 2, no. 4, pp. 197.
54. Altenbach, H., and Eremeyev, V. A. 2010. “On the bending of viscoelastic plates made of
55. polymer foams“, Acta Mechanica, vol. 204, no. 3, pp. 137-154.
56. Lekhnitskii, S. G. 1968. “Anisotropic plates“, Foreign Technology Div Wright-Patterson Afb Oh.
57. Ambartsumian S. A. 1970. “Theory of anisotropic plates: strength, stability, vibration“,
58. Technomic Publishing Company.
59. Vlasov B. F. 1957. “On the equations of bending of plates“ (in Russian), Doklady Akademii
60. Nauk Azerbeijanskoi SSR, vol. 13, no. 9, pp. 955-959.
61. Murakami H. 1986. “Laminated composite plate theory with improved in-plane responses“.
62. Grigolyuk E. I., Kulikov G. M. 2005. “Development of the Theory of Elastic Multilayered Plates
63. and Shells“, Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta, vol. 11, no.
64. , pp. 439-448.
65. Si J., Zhang Y. 2022. “An enhanced higher order zigzag theory for laminated composite plates
66. under mechanical/thermal loading“, Composite Structures, vol. 282, p. 115074.
67. Lezgy-Nazargah M., Salahshuran S. 2018. “A new mixed-field theory for bending and vibration
68. analysis of multi-layered composite plate“, Archives of Civil and Mechanical Engineering, vol.
69. , no. 3, pp. 818-832.
70. Pagano N. J. 1970. “Exact solutions for rectangular bidirectional composites and sandwich
71. plates“, Journal of composite materials, vol. 4, no. 1, pp. 20-34.
72. Carrera E. 2000. “An assessment of mixed and classical theories on global and local response
73. of multilayered orthotropic plates“, Composite structures, vol. 50, no. 2, pp. 183-198.
74. Carrera E. 2003. “Theories and finite elements for multilayered plates and shells: a unified
75. compact formulation with numerical assessment and benchmarking“, Archives of Computational
76. Methods in Engineering, vol. 10, no. 3, pp. 215-296.
77. Filippi M., Carrera E., Valvano S. 2018. “Analysis of multilayered structures embedding
78. viscoelastic layers by higher-order, and zig-zag plate elements“, Composites Part B: Engineering,
79. vol. 154, pp. 77-89.
80. Pobedrya B. E. 1984. “Mechanics of composite materials“, Izd. Mosk. Univ., Moscow..
81. Gorbachev V. I., Kabanova L. A. 2018. “Formulation of problems in the general Kirchhoff—Love
82. theory of inhomogeneous anisotropic plates“, Moscow University Mechanics Bulletin, vol. 73,
83. no. 3, pp. 60–66.
84. Kabanova L. A. 2022. “The first-order structural functions method solution to the simply
85. supported layered plate bending problem“, Lobachevskii Journal of Mathematics, vol. 43, no. 7,
86. pp 1628–1639.
Review
For citations:
Kabanova L.A. Comparison of structural functions method approximations of the solution of a linear elastic layered plate bending problem. Chebyshevskii Sbornik. 2022;23(4):211-323. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-4-211-232