On Bykovsky estimates for a measure of the quality of optimal coefficients
https://doi.org/10.22405/2226-8383-2022-23-4-178-187
Abstract
This work is devoted to obtaining estimates of the type of Bykovsky estimates for a measure of the quality of optimal coefficients.
The ways to obtain analogs of the Bykovsky estimate for the finite deviation of the parallelepipedal grid are outlined.
About the Authors
Antonina Nikolaevna KormachevaRussian Federation
postgraduate student
Nikolai Nikolaevich Dobrovol’skii
Russian Federation
candidate of physical and mathematical sciences
Irina Yuryevna Rebrova
Russian Federation
candidate of physical and mathematical sciences
Nikolai Mikhailovich Dobrovol’skii
Russian Federation
doctor of physical and mathematical sciences, professor
Tatiana Anatolyevna Morozova
Russian Federation
senior lecturer
References
1. Bakhvalov, N.S. 1959, “On approximate computation of multiple integrals”, Vestnik Moskovskogo
2. universiteta, no. 4, pp. 3–18.
3. Bykovskij, V.А 2002, “On the error of number-theoretic quadrature formulas”, Chebyshevskij
4. sbornik, vol. 3, no. 2(4), pp. 27–33.
5. O. A. Gorkusha, N. M. Dobrovolsky, 2005, "On estimates of hyperbolic zeta function of
6. lattices" // Chebyshevsky Collection, vol. 6, issue 2(14), pp. 130-138.
7. N. N. Dobrovol’skii, M. N. Dobrovol’skii, I. Yu. Rebrova, N. M. Dobrovol’skii, 2022, "The final
8. deviation and the main quality measure for Korob ov grids Chebyshevskii sbornik, vol. 23, no.
9. , pp. 56–73.
10. Dobrovol’skii, N. M., Esayan, А.R., Pikhtil’kov, S.А., Rodionova, O.V. & Ustyan, А.E. 1999,
11. “On a single algorithm for finding optimal coefficients”, Izvestiya TulGU. Seriya Matematika.
12. Mekhanika. Informatika, vol. 5, no. 1, pp. 51–71.
13. Dobrovol’skii, N. M., Esayan, А.R. & Rebrova, I. YU. 1998, “On a recursive algorithm
14. for lattices”, Teoriya priblizhenij i garmonicheskij analiz: Tezisy doklada Mezhdunarodnoj
15. konferentsii (Approximation theory and harmonic analysis: proceedings of the International
16. conference), Tula, Russia.
17. Dobrovol’skii, N. M., Esayan, А.R. & Rebrova, I. YU. 1998, “On a recursive algorithm for
18. lattices”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 5, no. 3, pp. 38–51.
19. A. N. Kormacheva, N. N. Dobrovol’skii, N. M. Dobrovol’skii, 2021, “On the hyp erb olic
20. parameter of a two-dimensional lattice of comparisons”, Chebyshevskii sbornik, vol. 22, no.
21. , pp. 168–182.
22. Korobov, N.M. 1959, “The evaluation of multiple integrals by method of optimal coefficients”,
23. Vestnik Moskovskogo universiteta, no. 4, pp. 19–25.
24. Korobov, N.M. 1960, “Properties and calculation of optimal coefficients”, Doklady Аkademii
25. nauk SSSR, vol. 132, no. 5, pp. 1009–1012.
26. Korobov, N.M. 2004, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic
27. methods in approximate analysis], 2nd ed, MTSNMO, Moscow, Russia.
28. Mikhlyaeva, A. V., 2018, "Approximation of quadratic algebraic lattices and nets by integer
29. lattices and rational nets" , Chebyshevskii sbornik, vol. 19, no. 3, pp. 241–256.
30. Mikhlyaeva, A. V., 2019, "Quality function for the approximation of quadratic algebraic nets" ,
31. Chebyshevskii sbornik, vol. 20, no. 1, pp. 307–312.
32. Seregina N. K., 2013, "Algorithms of numerical integration with the stopping rule" , TulSU
33. extraction. Natural sciences. Issue 3. pp. 193 — 201.
34. Seregina N. K., 2015, "On the quantitative measure of the quality of optimal coefficients" ,
35. Izvestiya TulSU. Natural sciences. Issue 1, pp. 22–29.
Review
For citations:
Kormacheva A.N., Dobrovol’skii N.N., Rebrova I.Yu., Dobrovol’skii N.M., Morozova T.A. On Bykovsky estimates for a measure of the quality of optimal coefficients. Chebyshevskii Sbornik. 2022;23(4):178-187. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-4-178-187