Preview

Chebyshevskii Sbornik

Advanced search

On Bykovsky estimates for a measure of the quality of optimal coefficients

https://doi.org/10.22405/2226-8383-2022-23-4-178-187

Abstract

This work is devoted to obtaining estimates of the type of Bykovsky estimates for a measure of the quality of optimal coefficients.
The ways to obtain analogs of the Bykovsky estimate for the finite deviation of the parallelepipedal grid are outlined.

About the Authors

Antonina Nikolaevna Kormacheva
Tula State Lev Tolstoy Pedagogical University
Russian Federation

postgraduate student



Nikolai Nikolaevich Dobrovol’skii
Tula State Lev Tolstoy Pedagogical University; Tula State University
Russian Federation

candidate of physical and mathematical sciences



Irina Yuryevna Rebrova
Tula State Lev Tolstoy Pedagogical University
Russian Federation

candidate of physical and mathematical sciences



Nikolai Mikhailovich Dobrovol’skii
Tula State Lev Tolstoy Pedagogical University
Russian Federation

doctor of physical and mathematical sciences, professor



Tatiana Anatolyevna Morozova
MIREA — Russian Technological University
Russian Federation

senior lecturer



References

1. Bakhvalov, N.S. 1959, “On approximate computation of multiple integrals”, Vestnik Moskovskogo

2. universiteta, no. 4, pp. 3–18.

3. Bykovskij, V.А 2002, “On the error of number-theoretic quadrature formulas”, Chebyshevskij

4. sbornik, vol. 3, no. 2(4), pp. 27–33.

5. O. A. Gorkusha, N. M. Dobrovolsky, 2005, "On estimates of hyperbolic zeta function of

6. lattices" // Chebyshevsky Collection, vol. 6, issue 2(14), pp. 130-138.

7. N. N. Dobrovol’skii, M. N. Dobrovol’skii, I. Yu. Rebrova, N. M. Dobrovol’skii, 2022, "The final

8. deviation and the main quality measure for Korob ov grids Chebyshevskii sbornik, vol. 23, no.

9. , pp. 56–73.

10. Dobrovol’skii, N. M., Esayan, А.R., Pikhtil’kov, S.А., Rodionova, O.V. & Ustyan, А.E. 1999,

11. “On a single algorithm for finding optimal coefficients”, Izvestiya TulGU. Seriya Matematika.

12. Mekhanika. Informatika, vol. 5, no. 1, pp. 51–71.

13. Dobrovol’skii, N. M., Esayan, А.R. & Rebrova, I. YU. 1998, “On a recursive algorithm

14. for lattices”, Teoriya priblizhenij i garmonicheskij analiz: Tezisy doklada Mezhdunarodnoj

15. konferentsii (Approximation theory and harmonic analysis: proceedings of the International

16. conference), Tula, Russia.

17. Dobrovol’skii, N. M., Esayan, А.R. & Rebrova, I. YU. 1998, “On a recursive algorithm for

18. lattices”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 5, no. 3, pp. 38–51.

19. A. N. Kormacheva, N. N. Dobrovol’skii, N. M. Dobrovol’skii, 2021, “On the hyp erb olic

20. parameter of a two-dimensional lattice of comparisons”, Chebyshevskii sbornik, vol. 22, no.

21. , pp. 168–182.

22. Korobov, N.M. 1959, “The evaluation of multiple integrals by method of optimal coefficients”,

23. Vestnik Moskovskogo universiteta, no. 4, pp. 19–25.

24. Korobov, N.M. 1960, “Properties and calculation of optimal coefficients”, Doklady Аkademii

25. nauk SSSR, vol. 132, no. 5, pp. 1009–1012.

26. Korobov, N.M. 2004, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic

27. methods in approximate analysis], 2nd ed, MTSNMO, Moscow, Russia.

28. Mikhlyaeva, A. V., 2018, "Approximation of quadratic algebraic lattices and nets by integer

29. lattices and rational nets" , Chebyshevskii sbornik, vol. 19, no. 3, pp. 241–256.

30. Mikhlyaeva, A. V., 2019, "Quality function for the approximation of quadratic algebraic nets" ,

31. Chebyshevskii sbornik, vol. 20, no. 1, pp. 307–312.

32. Seregina N. K., 2013, "Algorithms of numerical integration with the stopping rule" , TulSU

33. extraction. Natural sciences. Issue 3. pp. 193 — 201.

34. Seregina N. K., 2015, "On the quantitative measure of the quality of optimal coefficients" ,

35. Izvestiya TulSU. Natural sciences. Issue 1, pp. 22–29.


Review

For citations:


Kormacheva A.N., Dobrovol’skii N.N., Rebrova I.Yu., Dobrovol’skii N.M., Morozova T.A. On Bykovsky estimates for a measure of the quality of optimal coefficients. Chebyshevskii Sbornik. 2022;23(4):178-187. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-4-178-187

Views: 252


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)