Preview

Chebyshevskii Sbornik

Advanced search

Deviation estimates for rational grids approximating algebraic

https://doi.org/10.22405/2226-8383-2022-23-4-170-177

Abstract

This paper is devoted to obtaining estimates of the deviation of a parallelepipedal grid, which is a rational grid approximating the algebraic grid of a quadratic field.
New tasks have been set for further research.

About the Authors

Nikolai Nikolaevich Dobrovol’skii
Tula State Lev Tolstoy Pedagogical University; Tula State University
Russian Federation

candidate of physical and mathematical sciences



Irina Yuryevna Rebrova
Tula State Lev Tolstoy Pedagogical University
Russian Federation

candidate of physical and mathematical sciences



Antonina Nikolaevna Kormacheva
Tula State Lev Tolstoy Pedagogical University
Russian Federation

postgraduate student



Nikolai Mihailovich Dobrovol’skii
Tula State Lev Tolstoy Pedagogical University
Russian Federation

doctor of physical and mathematical sciences, professor



References

1. Bakhvalov, N.S. 1959, “On approximate computation of multiple integrals”, Vestnik Moskovskogo

2. universiteta, no. 4, pp. 3–18.

3. Bykovskij, V.А 2002, “On the error of number-theoretic quadrature formulas”, Chebyshevskij

4. sbornik, vol. 3, no. 2(4), pp. 27–33.

5. O. A. Gorkusha, N. M. Dobrovolsky, 2005, "On estimates of hyperbolic zeta function of

6. lattices" // Chebyshevsky Collection, vol. 6, issue 2(14), pp. 130-138.

7. Dobrovol’skii, N. M. 1984, “Evaluation of generalized variance parallelepipedal grids”, Dep. v

8. VINITI, no. 6089–84.

9. Dobrovol’skii, N. M., Esayan, А.R., Pikhtil’kov, S.А., Rodionova, O.V. & Ustyan, А.E. 1999,

10. “On a single algorithm for finding optimal coefficients”, Izvestiya TulGU. Seriya Matematika.

11. Mekhanika. Informatika, vol. 5, no. 1, pp. 51–71.

12. Dobrovol’skii, N. M., Esayan, А.R. & Rebrova, I. YU. 1998, “On a recursive algorithm

13. for lattices”, Teoriya priblizhenij i garmonicheskij analiz: Tezisy doklada Mezhdunarodnoj

14. konferentsii (Approximation theory and harmonic analysis: proceedings of the International

15. conference), Tula, Russia.

16. Dobrovol’skii, N. M., Esayan, А.R. & Rebrova, I. YU. 1998, “On a recursive algorithm for

17. lattices”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 5, no. 3, pp. 38–51.

18. Kassels, D. 1965, Vvedenie v geometriyu chisel, [Introduction to the geometry of numbers], Mir,

19. Moscow, Russia.

20. Kormacheva, A. N., 2019, "About the partial quotients of one of the continued fractions" ,

21. Chebyshevskii sbornik, vol. 20, no. 1, pp. 293–301.

22. A. N. Kormacheva, 2019, "Approximation of quadratic algebraic lattices by integer lattices" ,

23. Chebyshevskii sbornik, vol. 20, no. 2, pp. 366–373.

24. A. N. Kormacheva, 2020, "Approximation of quadratic algebraic lattices by integer lattices —

25. II" , Chebyshevskii sbornik, vol. 21, no. 3, pp. 215–222.

26. A. N. Kormacheva, N. N. Dobrovol’skii, N. M. Dobrovol’skii, 2021, “On the hyp erb olic

27. parameter of a two-dimensional lattice of comparisons”, Chebyshevskii sbornik, vol. 22, no.

28. , pp. 168–182.

29. Korobov, N.M. 1959, “The evaluation of multiple integrals by method of optimal coefficients”,

30. Vestnik Moskovskogo universiteta, no. 4, pp. 19–25.

31. Korobov, N.M. 1960, “Properties and calculation of optimal coefficients”, Doklady Аkademii

32. nauk SSSR, vol. 132, no. 5, pp. 1009–1012.

33. Mikhlyaeva, A. V., 2018, "Approximation of quadratic algebraic lattices and nets by integer

34. lattices and rational nets" , Chebyshevskii sbornik, vol. 19, no. 3, pp. 241–256.

35. Mikhlyaeva, A. V., 2019, "Quality function for the approximation of quadratic algebraic nets" ,

36. Chebyshevskii sbornik, vol. 20, no. 1, pp. 307–312.

37. Frolov, K.K. 1976, “Upper bounds on the error of quadrature formulas on classes of functions”,

38. Doklady Аkademii nauk SSSR, vol. 231, no.4, pp. 818–821.


Review

For citations:


Dobrovol’skii N.N., Rebrova I.Yu., Kormacheva A.N., Dobrovol’skii N.M. Deviation estimates for rational grids approximating algebraic. Chebyshevskii Sbornik. 2022;23(4):170-177. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-4-170-177

Views: 233


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)