Weighted Carleman inequality for fractional gradient
https://doi.org/10.22405/2226-8383-2022-23-4-152-156
Abstract
We prove the weighted Carleman inequality for the fractional gradient
‖𝑒−𝑡⟨𝑎, · ⟩| · |−𝛾𝑓‖𝑞 <= 𝐶‖𝑒−𝑡⟨𝑎, · ⟩| · |¯𝛾−¯𝛿∇𝛼𝑓‖𝑝, 𝑓 ∈ 𝐶∞
0 (R𝑑), 𝑡 > 0.
For 𝛼 = 1, it was proved by L. De Carli, D. Gorbachev, and S. Tikhonov (2020). An application of the Carleman inequality is given to prove the weak unique continuation property of a solution of the differential inequality with the potential |∇𝛼𝑓| <= 𝑉 |𝑓| in a weighted Sobolev space.
Keywords
About the Author
Dmitriy Victorovich GorbachevRussian Federation
doctor of physical and mathematical sciences
References
1. Benedetto, J.J. & Heinig, H.P. 2003. “Weighted Fourier inequalities: New proofs and generalizations”,
2. J. Fourier Anal. Appl., vol. 9, pp. 1–37.
3. De Carli, L., Gorbachev, D. & Tikhonov, S. 2020. “Weighted gradient inequalities and unique
4. continuation problems”, Calc. Var. Partial Dif., vol. 59, no. 3, article 89.
5. Gorbachev, D.V., Ivanov, V.I. & Tikhonov, S.Yu. 2020. “Sharp approximation theorems and
6. Fourier inequalities in the Dunkl setting”, J. Approx. Theory, vol. 258, article 105462.
7. Gorbachev, D.V., Ivanov, V.I. & Tikhonov, S.Yu. 2021. “Riesz potential and maximal function
8. for Dunkl transform”, Potential Anal., vol. 55, pp. 513–538.
9. Heinig, H.P. 2006. “Weighted Sobolev inequalities for gradients”, Harmonic analysis and
10. applications. Appl. Numer. Harmon. Anal., Birkh¨auser, Boston, MA, pp. 17–23.
Review
For citations:
Gorbachev D.V. Weighted Carleman inequality for fractional gradient. Chebyshevskii Sbornik. 2022;23(4):152-156. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-4-152-156