Preview

Chebyshevskii Sbornik

Advanced search

Weighted Carleman inequality for fractional gradient

https://doi.org/10.22405/2226-8383-2022-23-4-152-156

Abstract

We prove the weighted Carleman inequality for the fractional gradient
‖𝑒−𝑡⟨𝑎, · ⟩| · |−𝛾𝑓‖𝑞 <= 𝐶‖𝑒−𝑡⟨𝑎, · ⟩| · |¯𝛾−¯𝛿∇𝛼𝑓‖𝑝, 𝑓 ∈ 𝐶∞
0 (R𝑑), 𝑡 > 0.
For 𝛼 = 1, it was proved by L. De Carli, D. Gorbachev, and S. Tikhonov (2020). An application of the Carleman inequality is given to prove the weak unique continuation property of a solution of the differential inequality with the potential |∇𝛼𝑓| <= 𝑉 |𝑓| in a weighted Sobolev space.

About the Author

Dmitriy Victorovich Gorbachev
Tula State University
Russian Federation

doctor of physical and mathematical sciences



References

1. Benedetto, J.J. & Heinig, H.P. 2003. “Weighted Fourier inequalities: New proofs and generalizations”,

2. J. Fourier Anal. Appl., vol. 9, pp. 1–37.

3. De Carli, L., Gorbachev, D. & Tikhonov, S. 2020. “Weighted gradient inequalities and unique

4. continuation problems”, Calc. Var. Partial Dif., vol. 59, no. 3, article 89.

5. Gorbachev, D.V., Ivanov, V.I. & Tikhonov, S.Yu. 2020. “Sharp approximation theorems and

6. Fourier inequalities in the Dunkl setting”, J. Approx. Theory, vol. 258, article 105462.

7. Gorbachev, D.V., Ivanov, V.I. & Tikhonov, S.Yu. 2021. “Riesz potential and maximal function

8. for Dunkl transform”, Potential Anal., vol. 55, pp. 513–538.

9. Heinig, H.P. 2006. “Weighted Sobolev inequalities for gradients”, Harmonic analysis and

10. applications. Appl. Numer. Harmon. Anal., Birkh¨auser, Boston, MA, pp. 17–23.


Review

For citations:


Gorbachev D.V. Weighted Carleman inequality for fractional gradient. Chebyshevskii Sbornik. 2022;23(4):152-156. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-4-152-156

Views: 212


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)