Carleman’s formula for the matrix domains of Siegel
https://doi.org/10.22405/2226-8383-2022-23-4-126-135
Abstract
The domain of Siegel first type is not a bounded domain, but Carleman’s formulas for it play an important role in the further presentation. In this paper, the Carleman formula for the Siegel domain is found.
About the Authors
Uktam Sodikovich RakhmonovUzbekistan
associate professor
Zokirbek Kadamovich Matyakubov
Uzbekistan
postgraduate student
References
1. T.Carleman, Les fonctions quasi analytiques, Paris: Gauthier-Villars (1926), pp. 3–6.
2. G. M. Golusin, W. J. Krylow, Verallgemeinerung einer Formel von Carleman und ihre
3. Anwendung zur analytischen Fortsetzung, Mat. Sb., 40:2 (1933), 144–149.
4. Hua Luogeng, Harmonic analysis of functions of several complex variables, in classical domains,
5. Moscow, IL, 1963 (in Russian).
6. A.M.Kytmanov, T.N.Nikitina, Analogs of Carleman’s formula for classical domains, Math.
7. Notes, 45:3 (1989), 243–248.
8. A.M.Kytmanov, T.N.Nikitina, Multidimensional Carleman formulas in Siegel domain, Soviet
9. Math. (Iz. VUZ), 34:3 (1990), 50–56.
10. S.Kosbergenov, On the Carleman formula for a matrix ball, Russian Math. (Iz. VUZ), 43:1
11. (1999), 72–75.
12. G.Khudayberganov, U.S.Rakhmonov, Z.Q.Matyakubov, Integral formulas for some matrix
13. domains, Contemporary Mathematics, AMS, Volume 662, pp. 89-95.(2016).
14. G.Khudayberganov, U.S.Rakhmonov, The Bergman and Cauchy-Szego kernels for matrix ball
15. of the second type, Journal of Siberian Federal University. Mathematics and Physics 7:3, pp.
16. -310.(2014).
17. G.Khudayberganov, B.P.Otemuratov, U.S.Rakhmonov, Boundary Morera theorem for the
18. matrix ball of the third type, Journal of Siberian Federal University. Mathematics and Physics,
19. :1, 40-45.(2018).
20. G.Khudayberganov, U.S.Rakhmonov, Carleman Formula for Matrix Ball of the Third Type,
21. Algebra, Complex Analysis, and Pluripotential Theory. USUZCAMP 2017. Springer Proceedings
22. in Mathematics and Statistics vol. 264, pp. 101-108, Springer, Cham.(2017).
23. U. S. Rakhmonov, J. Sh. Abdullayev, On volumes of matrix ball of third type and generalized
24. Lie balls, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 29:4 (2019), 548–557
25. G. Khudayberganov, J. Abdullayev, Relationship between the Kernels Bergman and Cauchy-
26. Szeg˝o in the domains 𝜏+ (𝑛 − 1) and ℜ𝑛𝐼
27. 𝑉 , Journal of Siberian Federal University. Mathematics
28. & Physics, 13:5, 559-567(2020).
29. G.Khudayberganov, A.M.Khalknazarov, J.Sh.Abdullayev, Laplace and Hua Luogeng operators,
30. Russian Math. (Iz. VUZ), 64:3 (2020), 66–71.
31. L. A. Aizenberg, Carleman Formulas in complex analysis, Novosibirsk, Nauka, 1990 (in
32. Russian).
33. P. Kusis, Introduction to the theory of spaces 𝐻𝑝 . М.: Мир. 1984. 368 с.
34. G. Khudayberganov, A. M. Kytmanov, B. A. Shaimkulov, Analysis in matrix domains, Monograph.
35. Krasnoyarsk, Siberian Federal University, 2017 (in Russian).
36. I. I. Privalov, Boundary properties of analytic functions, M.: Gostekhizdat, 1950. – 338 с.
37. Jonibek Sh. Abdullayev. An analogue of Bremermann’s theorem on finding the Bergman kernel
38. for the Cartesian product of the classical domains ℜ𝐼 (𝑚, 𝑘) and ℜ𝐼𝐼 (𝑛), Bul. Acad. Stiinte
39. Repub. Mold. Mat., 2020, no. 3, 88–96.
40. G. Khudayberganov, J. Sh. Abdullayev. The boundary Morera theorem for domain 𝜏+ (𝑛 − 1),
41. Ufimsk. Mat. Zh., 13:3 (2021), pp. 196–210.
42. K. Rakhimov, Sh. Shopulatov. A mean value criterion for plurisubharmonic functions, Complex
43. Variables and Elliptic Equations, (2021) DOI:10.1080/17476933.2021.1954623.
44. G. Khudayberganov, J. Sh. Abdullayev. Holomorphic continuation into a matrix ball of
45. functions defined on a piece of its skeleton, Vestnik Udmurtskogo Universiteta. Matematika.
46. Mekhanika. Komp’yuternye Nauki, 2021, vol. 31, issue 2, pp. 296–310.
47. J. Sh. Abdullayev. Estimates the Bergman kernel for classical domains E. Cartan’s, Chebyshevskii
48. sbornik, 2021, vol. 22, no. 3, pp. 21–32.
49. Uktam S. Rakhmonov, Jonibek Sh. Abdullayev, (2022), On properties of the second type matrix
50. ball 𝐵(2)
51. 𝑚,𝑛 from space C𝑛[𝑚 × 𝑚], J. Sib. Fed. Univ. Math. Phys., 15:3, pp. 329–342.
Review
For citations:
Rakhmonov U.S., Matyakubov Z.K. Carleman’s formula for the matrix domains of Siegel. Chebyshevskii Sbornik. 2022;23(4):126-135. (In Russ.) https://doi.org/10.22405/2226-8383-2022-23-4-126-135